ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or by customer's technical experts. onsemi products and actal performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiari

20mA Air-Core Tachometer Drive Circuit

2

Description

The CS289 is specifically designed for use with air-core meter movements. The IC has charge pump circuitry for frequency-to-voltage conversion, a shunt regulator for stable

operation, a function generator, and sine and cosine amplifiers. The buffered sine and cosine outputs will typically sink or source 20mA.

Features

Single Supply Operation

CS289

- **On-Chip Regulation**
- **20mA Output Drive** Capability

Absolute Maximum Viings

Supply Voltage (V _{CC})	
Operating Temperature	-40°C to +100°C
Junction Temperature	-40°C to 150°C
Storage Temperature	-65°C to +150°C
Lead Temperature Soldering	

Wave Solder (through hole styles only).....10 sec. max, 260°C peak Reflow (SMD styles only)......60 sec. max above 183°C, 230°C peak

ON S

December, 2001 - Rev. 4

ON Semiconductor 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885-3600 Fax: (401)885-5786 N. American Technical Support: 800-282-9855 Web Site: www.onsemi.com

	Electrical Characteristics: $(V_{CC} = 13.1V_{cc})$	$-30^{\circ}C \le T_{c}$	A≤ 85°C)		
PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Supply Current (Note 2)	$V_{CC} = 15.0V$ $V_{CC} = 13.1V$ $V_{CC} = 11.3V$		54 60 60	65 65	mA mA mA
Regulated Voltage	$I_{REG} = 4.3 mA$	7.7	8.5	9.3	V
Regulation	$I_{REG} = 0$ to 5mA		0.10	0.20	V
Signal Input Current Saturation Voltage	$T = 25^{\circ}C$ $I_{SQ} OUT = 5mA, I_{SQ} IN = 500 \mu A$	0.1	2.0 0.20	4.0 0.55	mA V
Leakage Current	$I_{SQ} \text{ OUT} = 16 \text{V}, V_{SQ} \text{ IN} = 0 \text{V}$			10	μΑ
Input Current	C_{P} + = 0, T = 25°C		1	15	nA
F to V Output	$V_{SQ}IN = 0$ (zero input), $\emptyset = 0^{\circ}$ $V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$	1.8 6.3	2.1 7.1	2.4 7.9	v
Linearity	E_{O} vs. Frequency $V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$, T = 25°C	-1.5		1.5	%
V_{sine} at $\emptyset = 0^{\circ}$	V_{SQ} IN = 0 (zero input), \varnothing = 0°	-0.55	0.00	0.55	V
MAX V _{sine+}	$V_{COS} = 0$ (Note 1), $\emptyset = 90^{\circ}$	3.8	4.5	5.8	V
MAX V _{sine-}	$V_{COS} = 0$ (Note 1), $\emptyset = 270^{\circ}$	-3.8	-4.5	-5.8	V
Coil Drive Current	$\begin{split} V_{\text{COS}} &= 0 \text{ (Note 1)}, \varnothing = 90^\circ, \text{T} = 25^\circ\text{C}\\ V_{\text{COS}} &= 0 \text{ (Note 1)}, \varnothing = 270^\circ \end{split}$		20 20	25 25	mA mA
MAX V _{COS+}	V_{SQ} IN = 0 (zero input), \varnothing = 0°	3.8	4.5	5.8	V
MAX V _{COS} .	$V_{sine} = 0$ (Note 1), $\emptyset = 180^{\circ}$	-3.8	-4.5	-5.8	V
Coil Drive Current	$\begin{split} V_{SQ} \ IN &= 0 \ (zero \ input), \ \varnothing &= 0^{\circ} \\ V_{sine} &= 0 \ \ (Note \ 1), \ \varnothing &= 180^{\circ} \end{split}$		20 20	25 25	mA mA
External Voltage Ref.		4.98	5.40	5.85	V

Note 1: V_{sine} measured V_{cos} to V_Z . V_{COS} measured V_{COS} to V_Z . All other voltages specified are measured to ground. Note 2: Max PWR dissipation $\leq V_{CC} X I_{CC} - (V_2 I_{sine} + V12 I_{COS})$.

CS289

Package Pin Description

PACKAGE PI	N #	PIN SYMBOL	FUNCTION
20L SO	14L PDIP		
1	1	Vz	External Zener reference.
2	2	V _{sine}	Sine output signal.
3	4	V _{BIAS}	Test pin or "0" calibration pin.
4, 5, 6, 7, 14, 15, 16, 17	7	Gnd	Analog Ground connection.
8	5	C _{P-}	Negative input to charge pump.
9	6	C _{P+}	Positive input to charge pump.
10	3	NC	No Connection
11	8	F/V _{OUT}	Output voltage proportional to input signal frequency.

Package Pin Description: continued				
РАСК	AGE PIN #	PIN SYMBOL	FUNCTION	88
20L SO	14L PDIP			
12	9	S _Q OUT	Buffered square wave output signal.	
13	10	S _Q IN	Speed or RPM input signal.	
18	11	V _{REG}	Voltage regulator output.	
19	12	V _{COS}	Cosine output signal.	
20	13	V _{CC}	Supply voltage.	
	14	Pwr Gnd	Power Ground connection.	

Note 1: V_{sine} measured V_{sine} to V_Z . V_{COS} measured V_{COS} to V_Z . All other voltages specified are measured to ground. Note 2: Max PWR dissipation $\leq V_{CC} \times I_{CC}$ - ($V_2 I_{sine} + V12 I_{COS}$).

Typical Performance Characteristics

Circuit Description

Charge Pump

Function Generator/Sine and Cosine Amplifiers

The input frequency is buffered through a transistor, then applied to the charge pump for frequency-to-voltage conversion (Figure 1). The charge pump output voltage, EØ, will range from 2.1V with no input (Ø= 0°) to 7.1V at Ø = 270°. The charge that appears on C_T is reflected to C_{OUT} through a Norton amplifier. The frequency applied at S_QIN charges and discharges C_T through R₁ and R₂. C_{OUT} reflects the charge as a voltage across resistor R_T.

The output waveforms of the sine and cosine amplifiers are derived by On-Chip Amplifier/Comparator circuitry. The various trip points for the circuit (i.e. 90°, 180°, 270°) are determined by an internal resistor divider connected to the voltage regulator. The voltage $E\emptyset$ is compared to the divider network by the function generator circuitry. Use of an external zener reference at V_z allows both sine and cosine amplifiers to swing positive and negative with respect to this reference. The output magnitudes and directions have the relationship as shown in Typical Characteristics diagrams.

Note: Pin connections referenced are for the 14L DIP.

Figure 1. Functional Diagram of CS289 Circuit.

$$\frac{\text{RPM}}{60} \times \frac{\# \text{ OF CYL.}}{2} = \text{Frequency}$$

 $V_{\text{F/V}_{\text{OUT}}} = 2.1 + \text{Frequency x } C_T \text{ x } R_T \text{ (V}_{\text{REG}} \text{ -0 } \text{.7)}$ The above equations were used in calculating the follow-

ing values, where $V_{F/V_{OUT}}$ = 7.1V at =270° and C_T = 0.01 F. 4 cylinder: Freq = 200Hz, R_T = 320k Ω

4 cylinder: Freq = 200Hz, R_T = 320k Ω 6 cylinder: Freq = 300Hz, R_T = 220k Ω 8 cylinder: Freq = 400Hz, R_T = 150k Ω

Figure 2: Alternate Trimming Method

Typical values shown above apply to a nominal value of V_{REG} of 8.5 volts. It must be realized that trimming of $R_{\rm T}$ will be necessary to compensate for variations in regulator voltage from one unit to another.

An alternative to this adjustment is to replace R_2 with a potentiometer, as shown in Figure 2.

Partial schematic shown in Figure 3 represents one method for use with DC applications instead of frequency.

Figure 3: DC Application

Package Specification

PACKAGE DIMENSIONS IN mm (INCHES)

		D		
Lead Count	Me	etric	Eng	glish
	Max	Min	Max	Min
14L PDIP	19.69	18.67	.775	.735
20L SO Wide	13.00	12.60	.512	.496

PACKAGE THERMAL DATA

Thern	nal Data	14L PDIP	20L SOIC	
$R_{\Theta JC}$	typ	48	17	°C/W
$R_{\Theta JA}$	typ	85	90	°C/W

Ordering Information		
Part Number	Description	
CS289GDW20	20 Lead SO Wide	
CS289GDWR20	20 Lead SO Wide (tape & reel)	
CS289GN14	14 Lead PDIP	

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor reserves the right to make changes without further notice to any products herein. For additional information and the latest available information, please contact your local ON Semiconductor representative.

Notes

Notes