Onsemi

MOSFET - Power, Single N-Channel, STD Gate, SO-8FL 80 V, 4.5 mΩ, 94 A

Product Preview NTMFS4D5N08X

Features

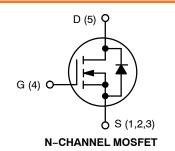
- Low Q_{RR}, Soft Recovery Body Diode
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

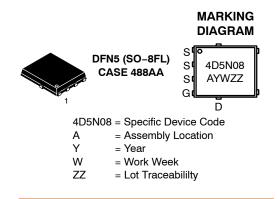
Typical Applications

- Synchronous Rectification (SR) in DC-DC and AC-DC
- Primary Switch in Isolated DC-DC Converter
- Motor Drives

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Parameter	Symbol	Value	Unit	
Drain-to-Source Voltage		V _{DSS}	80	V
Gate-to-Source Voltage	V _{GS}	±20	V	
Continuous Drain Current	$T_{C} = 25^{\circ}C$	I _D	94	А
(Note 1)	$T_{\rm C} = 100^{\circ}{\rm C}$		67	
Power Dissipation (Note 1)	Power Dissipation (Note 1) $T_{C} = 25^{\circ}C$		82	W
Pulsed Drain Current	T _C = 25°C, t _p = 100 μs	I _{DM}	360	A
Operating Junction and Storage Range	T _J , T _{STG}	–55 to +175	°C	
Source Current (Body Diode)	۱ _S	139	А	
Single Pulse Avalanche Energy (I _{PK} = 35 A) (Note 3)	E _{AS}	61	mJ	
Lead Temperature for Soldering (1/8" from case for 10 s)	ΤL	260	°C	


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz. Cu pad.

- 2. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. 3. E_{AS} of 61 mJ is based on started TJ = 25 C, I_{AS} = 35 A, V_{DD} = 64 V,
- V_{GS} = 10 V, 100% avalanche tested.

This document contains information on a product under development. onsemi reserves the right to change or discontinue this product without notice.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	4.5 m Ω @ 10 V	94 A

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 3 of this data sheet.

THERMAL CHARACTERISTICS

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$R_{ ext{ heta}JC}$	1.8	°C/W
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	39	

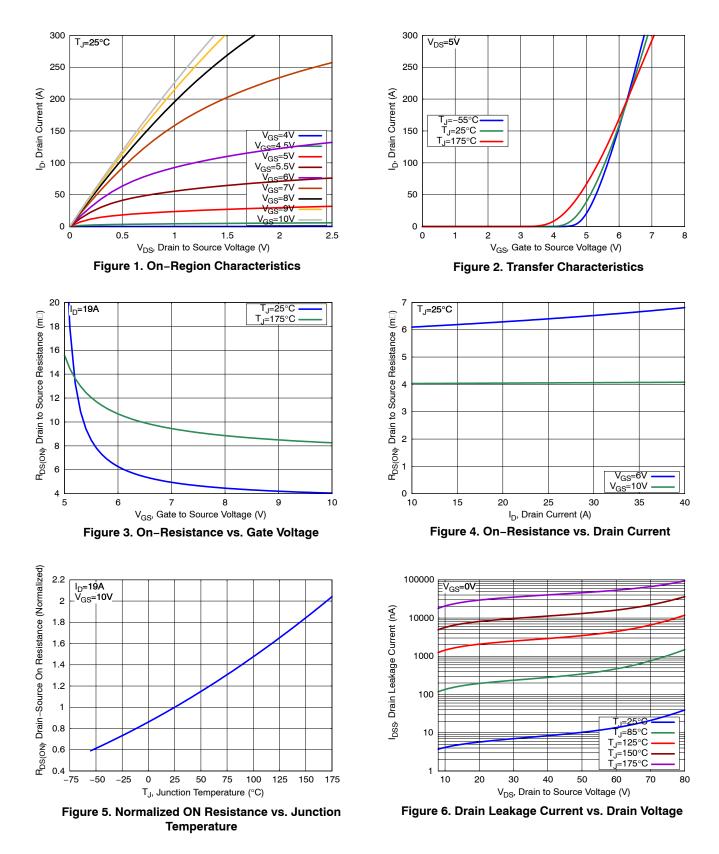
Surface-mounted on FR4 board using 1 in² pad, 1 oz. Cu.
R_{JA} is determined by the user's board design.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

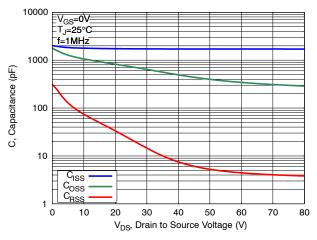
Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_{D} = 1 mA$	80			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	$\Delta V_{(BR)DSS}/ \Delta T_{J}$	I_D = 1 mA, Referenced to 25°C		32		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	V_{DS} = 80 V, T_{J} = 25°C			1.0	μA	
		$V_{DS} = 80 \text{ V}, \text{ T}_{J} = 125^{\circ}\text{C}$			250		
Gate-to-Source Leakage Current	I _{GSS}	V_{DS} = 20 V, V_{DS} = 0 V			100	nA	
ON CHARACTERISTICS							
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 19 A		4.0	4.5	mΩ	
		V_{GS} = 6 V, I_{D} = 10 A		6.1	9.1		
Gate Threshold Voltage	V _{GS(TH)}	V_{GS} = V_{DS} , I_D = 96 μ A	2.4		3.6	V	
Gate Threshold Voltage Temperature Coefficient	${\Delta V_{GS(TH)} / \over \Delta T_J}/$	V_{GS} = V_{DS} , I_D = 96 μ A		-7		mV/°C	
Forward Transconductance	9 FS	$V_{DS} = 5 \text{ V}, \text{ I}_{D} = 19 \text{ A}$		61		S	
CHARGES, CAPACITANCES & GATE RE	SISTANCE						
Input Capacitance	C _{ISS}			1714		pF	
Output Capacitance	C _{OSS}			493]	
Reverse Transfer Capacitance	C _{RSS}	V_{GS} = 0 V, V_{DS} = 40 V, f = 1 MHz		7.5			
Output Charge	Q _{OSS}			35		nC	
Total Gate Charge	Q _{G(TOT)}	$V_{GS} = 6 \text{ V}, \text{ V}_{DD} = 40 \text{ V}, \text{ I}_{D} = 19 \text{ A}$		15			
				24		nC	
Threshold Gate Charge	Q _{G(TH)}			5.3			
Gate-to-Source Charge	Q _{GS}	V_{GS} = 10 V, V_{DD} = 40 V, I_{D} = 19 A		8.1			
Gate-to-Drain Charge	Q _{GD}			3.8			
Gate Plateau Voltage	V _{GP}			4.7		V	
Gate Resistance	R _G	f = 1 MHz		1.5		Ω	
SWITCHING CHARACTERISTICS							
Turn-On Delay Time	t _{d(ON)}			11		ns	
Rise Time	t _r	Resistive Load,		24			
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 0/10 V, V_{DD} = 40 V, I_{D} = 19 A, R_{G} = 2.5 Ω		16]	
Fall Time	t _f			30			
SOURCE-TO-DRAIN DIODE CHARACTI	ERISTICS						
Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = 19 A, T _J = 25°C		0.82	1.2	V	
		V _{GS} = 0 V, I _S = 19 A, T _J = 125°C		0.66		1	

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit	
SOURCE-TO-DRAIN DIODE CHARACTERISTICS							
Reverse Recovery Time	t _{RR}			19		ns	
Charge Time	t _a	V _{GS} = 0 V, dl/dt = 1000 A/μs,		10			
Discharge Time	t _b	V_{GS} = 0 V, dl/dt = 1000 A/µs, I _S = 19 A, V _{DD} = 40 V		8.5			
Reverse Recovery Charge	Q _{RR}			101		nC	


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

DEVICE ORDERING INFORMATION


Device	Marking	Package	Shipping [†]
NTMFS4D5N08XT1G	4D5N08	DFN5 (Pb–Free)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

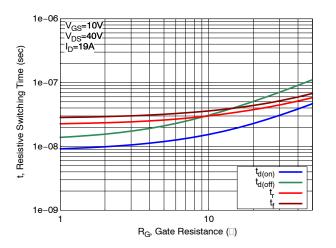


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

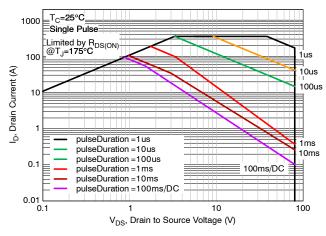
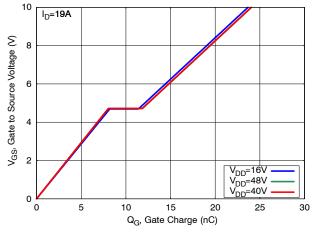



Figure 11. Safe Operating Area (SOA)

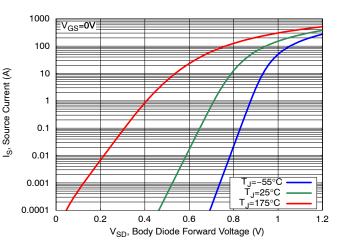
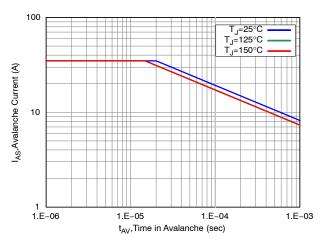
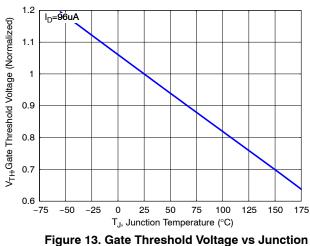
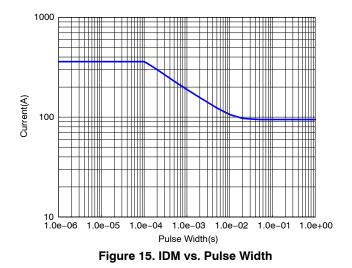




Figure 10. Diode Forward Characteristics



TYPICAL CHARACTERISTICS

Igure 13. Gate Threshold Voltage vs Junctior Temperature

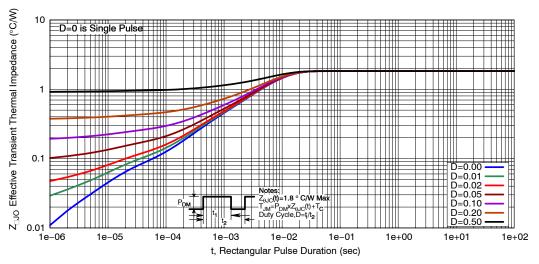
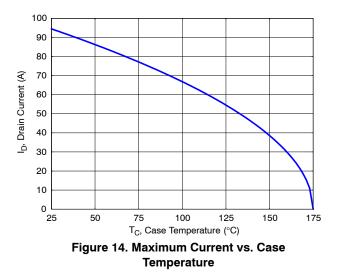
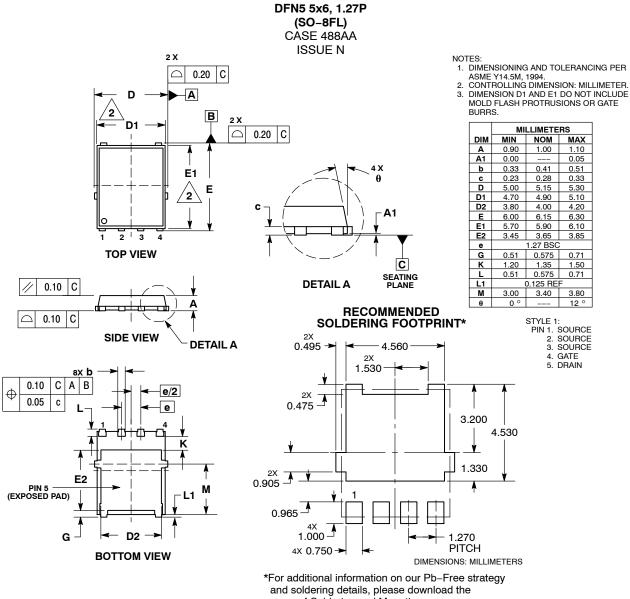




Figure 16. Transient Thermal Response

PACKAGE DIMENSIONS

onsemi Soldering and Mounting

Techniques Reference Manual, SOLDERRM/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and asfety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such un

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: <u>www.onsemi.com/design/resources/technical-documentation</u> onsemi Website: <u>www.onsemi.com</u> ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales