

15 A, 1200 V, Hyperfast Diode

The RHRP15120 is a hyperfast diode with soft recovery characteristics. It has the half recovery time of ultrafast diodes and is silicon nitride passivated ionimplanted epitaxial planar construction. These devices are intended to be used as freewheeling/ clamping diodes and diodes in a variety of switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Features

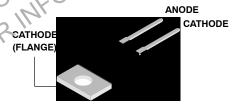
21200 V Reverse Voltage and High Reliability

- Avalanche Energy Rated
- •RoHS Compliant

Applications

Switching Po المراج عنه Switching Po

- Powe Switting ?! Juits
- ●Ge. ra. Purr se


Ordering Information

PART NUMBER	PACKAGE	BRAN
RHRP15120	TO - 220AC - 2L	RHR1' .20

NOTE: When ordering, use the entire part

Packaging

JEDEC TO - 220AC

Symbol

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

	RHRP15120	UNIT
Peak Repetitive Reverse Voltage	1200	V
Working Peak Reverse Voltage	1200	V
DC Blocking Voltage	1200	V
Average Rectified Forward Current	15	Α
Repetitive Peak Surge Current	30	Α
Nonrepetitive Peak Surge Current	200	Α
Maximum Power Dissipation	100	W
Avalanche Energy (See Figures 10 and 11)	20	mJ
Operating and Storage Temperature	-65 to 175	°C

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
'	I _F = 15 A			3.2	V
	I _F = 15 A, T _C = 150 ^o C			2.6	V
I _R	V _R = 1200 V			100	ΔS
	V _R = 1200 V, T _C = 150 ^o C			500	ΔS
- "	I _F = 1 A, dI _F /dt = 100 A/∑s			65	ns
	I _F = 15 A, dI _F /dt = 100 A/\(\bar{\cu}\)s			75	ns
t _a	I _F = 15A, dI _F /dt = 100 A/2s	_	36	_	ns
t _b	I _F = 15 A, dI _F /dt = 100 A/실s	_	28	_	ns
Q _{rr}	I _F = 15 A, dI _F /dt = 100 A/ ⊚ s	_	150	_	nC
СЈ	V _R = 10 V, I _F = 0 A	_	55	_	pF
RZJC				1.5	°C/W
t _a = Time to reach	rery time (See Figure 9), summation of t _a + t _b . peak reverse current (See Figure 9). ak I _{RM} to projected zero crossing of I _{RM} based — a	s rigi line from pea	ek ነ _{ብM} throt	5% איי וואי (See	Figure 9).
Q _{rr} = Reverse recove	ry charge.	ED	ansent	10.	
C _J = Junction capa	citance.	NUIR	O. ML		
R _{UJC} = Thermal resist pw = pulse width. D = duty cycle.	forward voltage (pw = 300 S s, D = 2%). reverse current. very time (See Figure 9), summation of t _a + t _b . peak reverse current (See Figure 9). ak I _{RM} to projected zero crossing of I _{RM} based and any charge. citance. citance junction to case.	s right line from pea	kok,		
ypical Perfor	mance Come REPORTE	IE FOI			
100		1000		175°C	
(A)		(@ Y)			
				100°C	

DEFINITIONS

Typical Performance C.

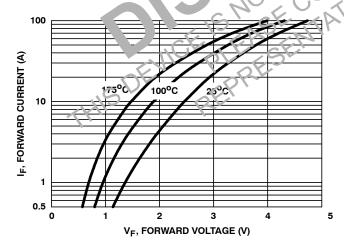


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

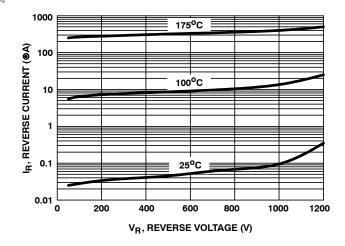


FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

Typical Performance Curves (Continued)

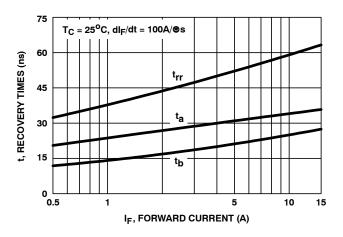
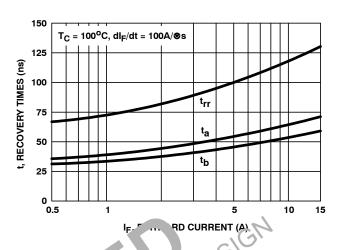
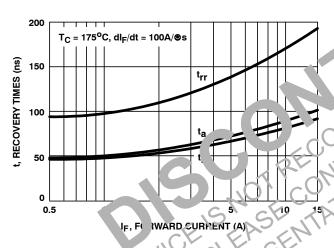




FIGURE 3. t_{rr} , t_a and t_b curves vs forward current

ES vs. FORWARD CURRENT FIGURE 4. trr , AND tb

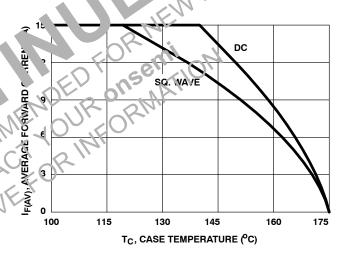


FIGURE 6. CURRENT DERATING CURVE

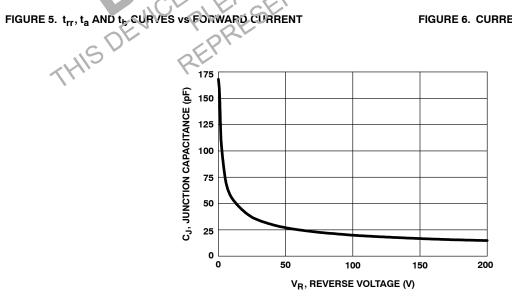


FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE

Test Circuits and Waveforms

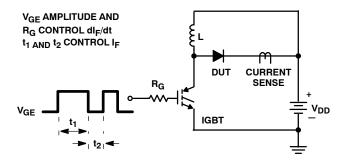


FIGURE 8. t_{rr} TEST CIRCUIT

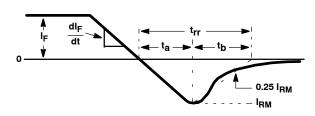
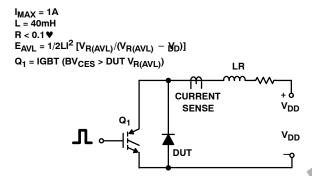
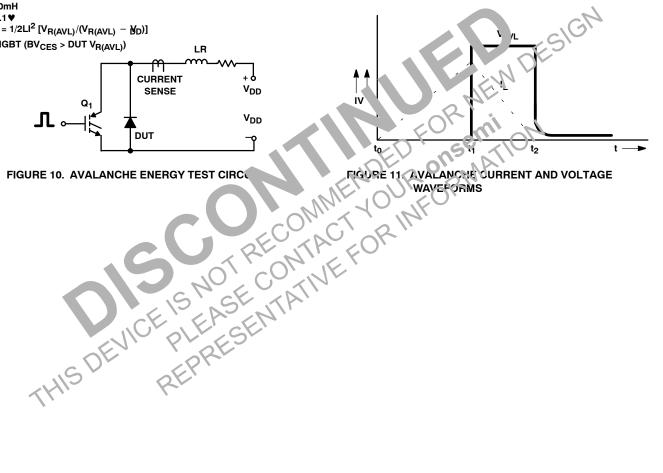




FIGURE 9. t_{rr} WAVEFORMS AND DEFINITIONS

coverage may be accessed at www.onsemi.com/site/pdf/Patent@Marking.pdf ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guaranteegarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over timbboperating parameters, including "Typic als" must be valida fed each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the right s of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semicondotor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303 675 2175 or 800 344 3860 Toll Free USA/Canada Phone: 421 33 790 2910 Fax: 303 9675 92176 or 800 9344 93867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800@282@9855 Toll Free ON Semiconductor Website: www.onsemi.com USA/Canada Europe, Middle East and Africa Technical Support:

Japan Customer Focus Center Phone: 81 23 25817 21050

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative