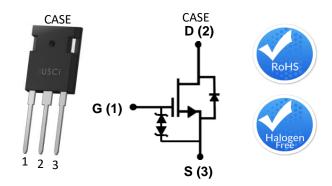
QOCVO

SiC JFET Division

Is Now Part of

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>


onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actal performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death asso

Datasheet

Description

United Silicon Carbide's cascode products co-package its highperformance G3 SiC JFETs with a cascode optimized MOSFET to produce the only standard gate drive SiC device in the market today. This series exhibits ultra-low gate charge, but also the best reverse recovery characteristics of any device of similar ratings. These devices are excellent for switching inductive loads when used with recommended RC-snubbers, and any application requiring standard gate drive.

Part Number	Package	Marking			
UF3C065040K3S	TO-247-3L	UF3C065040K3S			

Typical Applications

- EV charging
- PV inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Features

- Typical on-resistance $R_{DS(on),typ}$ of $42m\Omega$
- Maximum operating temperature of 175°C
- Excellent reverse recovery
- Low gate charge
- Low intrinsic capacitance
- ESD protected, HBM class 2
- Very low switching losses (required RC-snubber loss
- negligible under typical operating conditions)
- AECQ Qualified

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V _{DS}		650	V
Gate-source voltage	V _{GS}	DC	-25 to +25	V
Continuous drain current ¹	1	T _C =25°C	54	А
continuous drain current	I _D	T _c =100°C	40	А
Pulsed drain current ²	I _{DM}	T _C =25°C	125	А
Single pulsed avalanche energy ³	E _{AS}	L=15mH, I _{AS} =3.19A	76	mJ
Power dissipation	P _{tot}	T _c =25°C	326	W
Maximum junction temperature	T _{J,max}		175	°C
Operating and storage temperature	T _J , T _{STG}		-55 to 175	°C
Max. lead temperature for soldering, 1/8" from case for 5 seconds	TL		250	°C

- 1 Limited by T_{J,max}
- 2 Pulse width t_p limited by $T_{J,max}$
- 3 Starting $T_J = 25^{\circ}C$

United **SiC**

Silicon Carbide (SiC) Cascode JFET - EliteSiC, Power N-Channel, TO-247-3L, 650 V, 42 mohm | UF3C065040K3S

Datasheet

Electrical Characteristics (T_J = +25°C unless otherwise specified)

Typical Performance - Static

Doromotor	Symbol	Test Conditions		Value	Units		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units	
Drain-source breakdown voltage	BV _{DS}	V _{GS} =0V, I _D =1mA	650			V	
Total drain leakage current	I _{DSS}	V _{DS} =650V, V _{GS} =0V, T _J =25°C		0.7	150		
		V _{DS} =650V, V _{GS} =0V, T _J =175°C		10	μ	μA	
Total gate leakage current	I _{GSS}	V _{DS} =0V, T _j =25°C, V _{GS} =-20V / +20V		6	±20	μA	
Drain-source on-resistance	D	V _{GS} =12V, I _D =40A, T _J =25°C		42	52	mΩ	
	R _{DS(on)}	V _{GS} =12V, I _D =40A, T _J =175°C		78		1112.2	
Gate threshold voltage	V _{G(th)}	V _{DS} =5V, I _D =10mA	4	5	6	V	
Gate resistance	R _G	f=1MHz, open drain		4.5		Ω	

Typical Performance - Reverse Diode

Parameter	Symbol	Test Conditions	Value			Units
Farameter	Symbol	Test Conditions	Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C =25°C			54	А
Diode pulse current ²	I _{S,pulse}	T _C =25°C			125	А
Farmer land	V _{FSD}	V _{GS} =0V, I _F =20A, T _J =25°C		1.5	1.75	
Forward voltage		V _{GS} =0V, I _F =20A, T _J =175°C		1.8		V
Reverse recovery charge	Q _{rr}	V _R =400V, I _F =40A, V _{GS} =-5V, R _{G_EXT} =20Ω		138		nC
Reverse recovery time	t _{rr}	di/dt=1100A/µs, T _j =25°C		38		ns
Reverse recovery charge	Q _{rr}	V _R =400V, I _F =40A, V _{GS} =-5V, R _{G_EXT} =20Ω		137		nC
Reverse recovery time	t _{rr}	di/dt=1100A/µs, T _J =150°C		38		ns

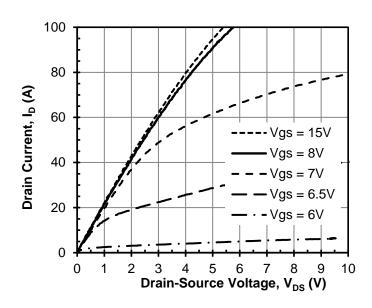
Datasheet

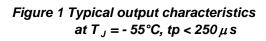
Typical Performance - Dynamic

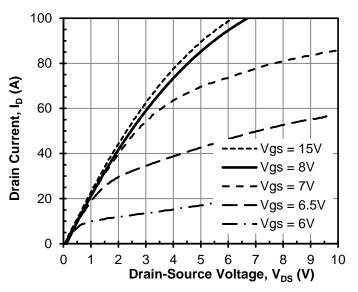
Parameter	symbol	Test Conditions	Value		Units	
Parameter	symbol	Test Conditions	Min	Тур	Max	Units
Input capacitance	C _{iss}	V _{DS} =100V,		1500		
Output capacitance	C _{oss}	V _{GS} =0V,		200		pF
Reverse transfer capacitance	C _{rss}	f=100kHz		2.2		
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 400V, V _{GS} =0V		146		pF
Effective output capacitance, time related	C _{oss(tr)}	V_{DS} =0V to 400V, V_{GS} =0V		325		pF
C _{OSS} stored energy	E _{oss}	V _{DS} =400V, V _{GS} =0V		11.7		μ
Total gate charge	Q _G	N/ 4001/ 1 404		51		
Gate-drain charge	Q_{GD}	V _{DS} =400V, I _D =40A, V _{GS} =-5V to 15V		11		nC
Gate-source charge	Q _{GS}	V _{GS} =-5V to 15V		19		
Turn-on delay time	t _{d(on)}	V _{DS} =400V, I _D =40A, Gate		35		-
Rise time	t _r	Driver=-5V to +15V,		24		
Turn-off delay time	t _{d(off)}	Turn-on $R_{G,EXT}$ =1.8 Ω ,		57		ns
Fall time	t _f	Turn-off $R_{G,EXT}$ =22 Ω		14		
Turn-on energy including R _s energy ⁴	E _{ON}	Inductive Load,		500		
Turn-off energy including R _s energy ⁴	E _{OFF}	FWD: same device with V_{GS} = -5V and R_{G} = 22 Ω		118		
Total switching energy including R _s energy ⁴	E _{TOTAL}	RC snubber: $R_s=5\Omega$		618		μ
Snubber R _s energy during turn-on	E _{RS_ON}	and C _s =150pF		1.7		
Snubber R _s energy during turn-off	E _{RS_OFF}	T _J =25°C		4.5		
Turn-on delay time	t _{d(on)}	V _{DS} =400V, I _D =40A, Gate		35		
Rise time	t _r	Driver=-5V to +15V,		22		
Turn-off delay time	t _{d(off)}	Turn-on $R_{G,EXT}$ =1.8 Ω ,		60		ns
Fall time	t _f	Turn-off $R_{G,EXT}$ =22 Ω		13		
Turn-on energy including R _s energy ⁴	E _{ON}	Inductive Load, FWD: same device with		479		
Turn-off energy including RS energy ⁴	E _{OFF}	$V_{GS} = -5V$ and $R_{G} = 22\Omega$		124		
Total switching energy including RS energy ⁴	E _{TOTAL}	RC snubber: $R_s=5\Omega$		603		μ
Snubber R _s energy during turn-on	E _{RS_ON}	and C _s =150pF		1.8		
Snubber R _s energy during turn-off	E _{RS_OFF}	T _J =150°C		5.3		

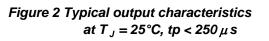
4 The switching performance are evaluated with a RC snubber circuit as shown in Figure 24.

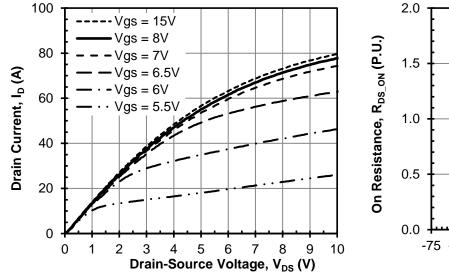
Thermal Characteristics

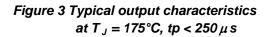

Parameter	symbol	Test Conditions	Value			Units
Falanietei			Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{\theta JC}$			0.35	0.46	°C/W

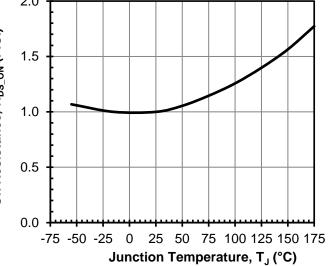

3

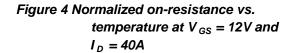


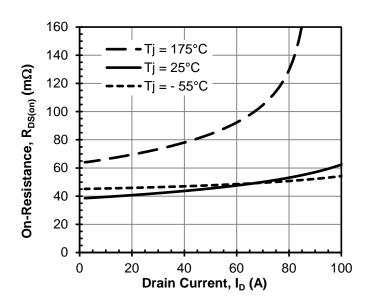

Datasheet

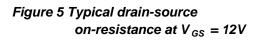

Typical Performance Diagrams

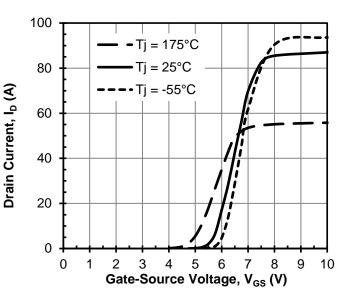


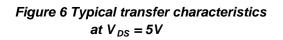


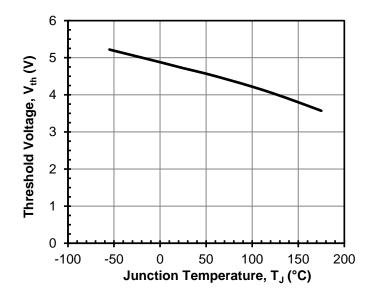


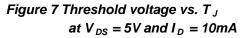












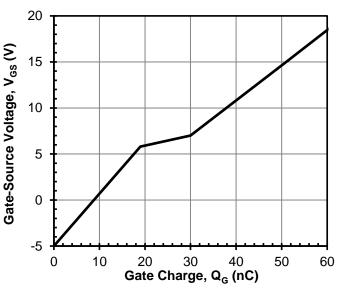
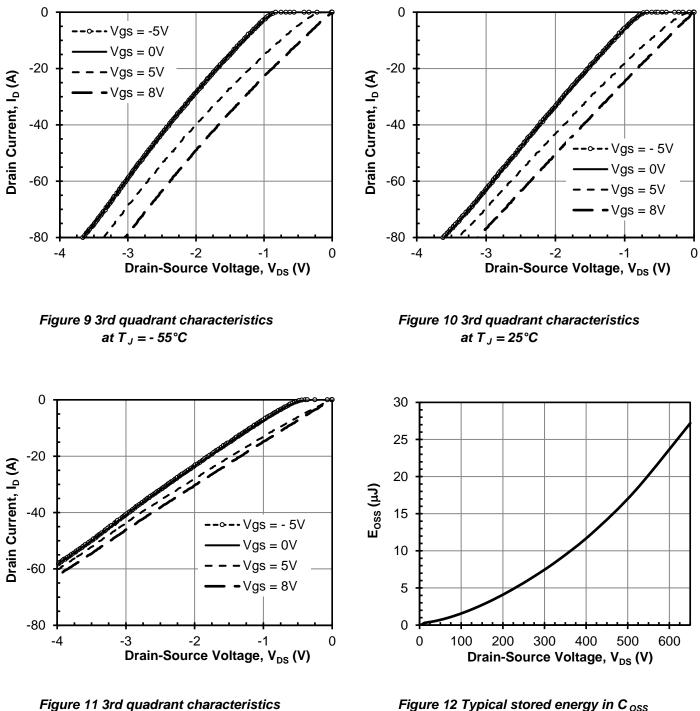
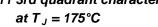
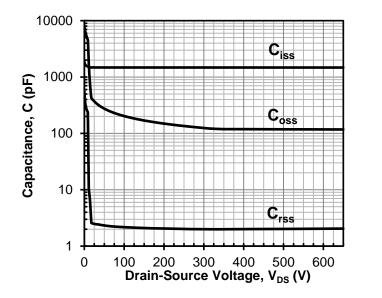
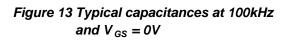




Figure 8 Typical gate charge at $V_{DS} = 400V$ and $I_D = 40A$





Datasheet

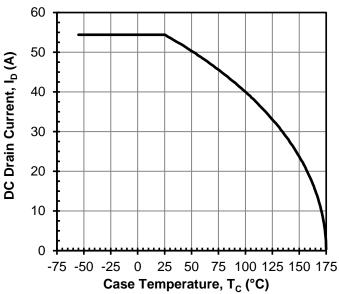


Figure 14 DC drain current derating

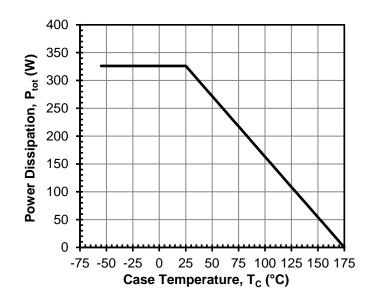


Figure 15 Total power dissipation

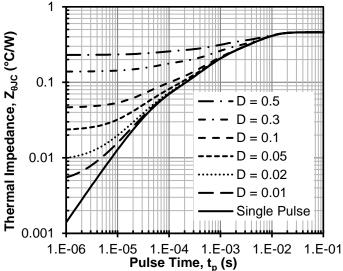
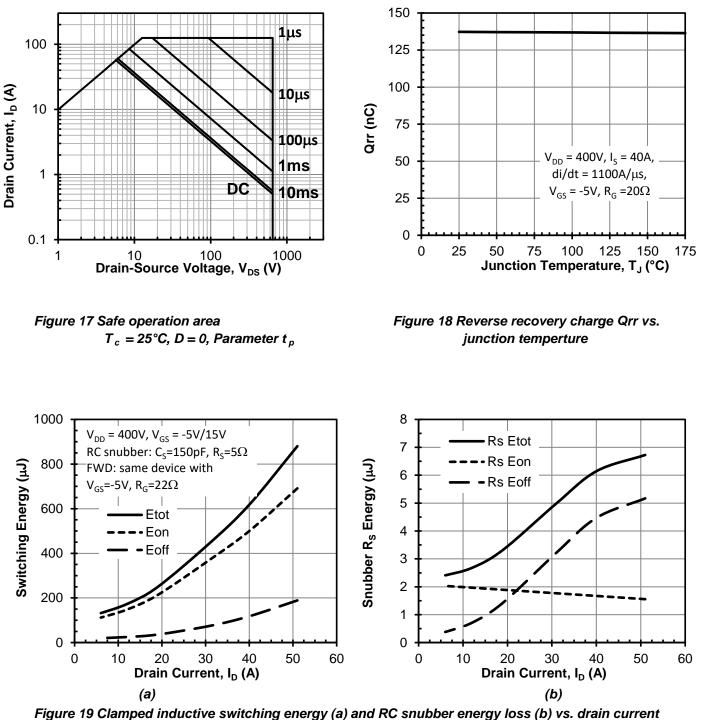
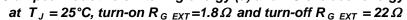




Figure 16 Maximum transient thermal impedance

Datasheet

Datasheet

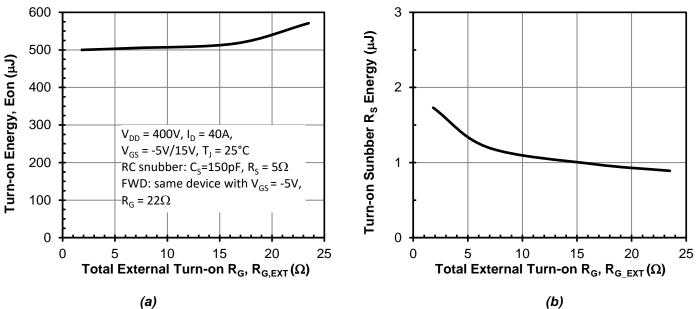


Figure 20 Clamped inductive switching turn-on energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of total external turn-off gate resistor $R_{G_{EXT}}$.

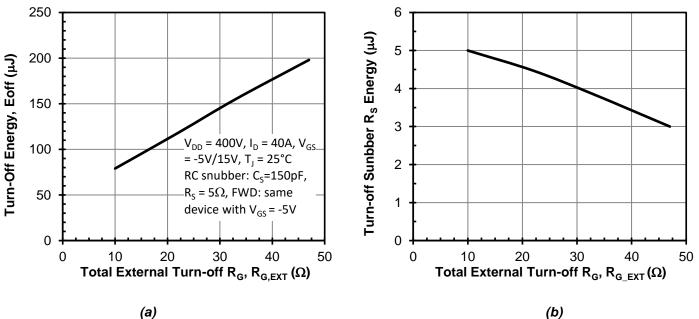


Figure 21 Clamped inductive switching turn-off energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of total external turn-off gate resistor $R_{G EXT}$.

Datasheet

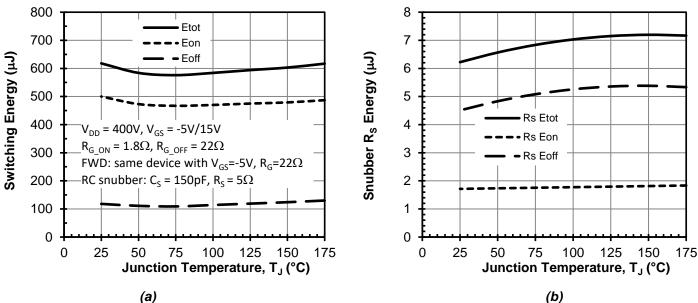
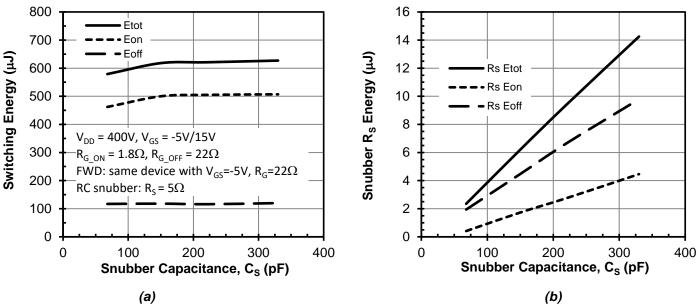
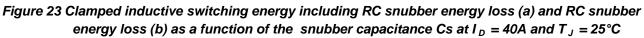




Figure 22 Clamped inductive switching energy including RC snubber energy loss (a) and RC snubber energy loss (b) as a function of junction temperature at $I_D = 40A$

Datasheet

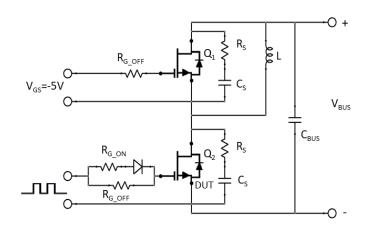


Figure 24 Inductive load switching test circuit An RC snubber ($R_s = 5 \Omega$, $C_s = 150 pF$) is required to improve the turn-off waveforms.

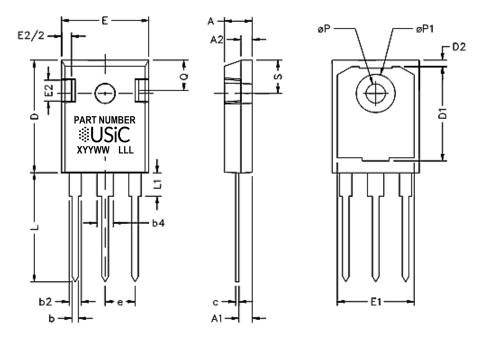
Applications Information

SiC cascodes are enhancement-mode power switches formed by a high-voltage SiC depletion-mode JFET and a low-voltage silicon MOSFET connected in series. The silicon MOSFET serves as the control unit while the SiC JFET provides high voltage blocking in the off state. This combination of devices in a single package provides compatibility with standard gate drivers and offers superior performance in terms of low on-resistance (R_{DS(on)}), output capacitance (Coss), gate charge (Qg), and reverse recovery charge (Qrr) leading to low conduction and switching losses. The SiC cascodes also provide excellent reverse conduction capability eliminating the need for an external anti-parallel diode.

Like other high performance power switches, proper PCB layout design to minimize circuit parasitics is strongly recommended due to the high dv/dt and di/dt rates. An external gate resistor is recommended when the cascode is working in the diode mode in order to achieve the optimum reverse recovery performance. For more information on cascode operation, see www.unitedsic.com.

Disclaimer

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.


Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

TO-247-3L PACKAGE OUTLINE, PART MARKING AND TUBE SPECIFICATIONS

PACKAGE OUTLINE

SYM	INC	HES	MILLIMETERS			
	MIN	MAX	MIN	МАХ		
A	0.185	0.209	4.699	5.309		
A1	0.087	0.102	2.21	2.61		
A2	0.059	0.098	1.499	2.489		
b	0.039	0.055	0.991	1.397		
b2	0.065	0.094	1.651	2.388		
b4	0.102	0.135	2.591	3.429		
С	0.015	0.035	0.381	0.889		
D	0.819	0.845	20.803	21.463		
D1	0.515	-	13.081	-		
D2	0.02	0.053	0.508	1.346		
E	0.61 0.64		15.494	16.256		
е	0.214	4 BSC	5.44	BSC		
E1	0.53	-	13.462	-		
E2	0.135	0.157	3.429	3.988		
L	0.78	0.8	19.812	20.32		
L1	-	0.177	-	4.496		
ØР	0.14	0.144	3.556	3.658		
ØP1	0.278	0.291	7.061	7.391		
Q	0.212	0.244	5.385	6.198		
S	0.243	3 BSC	6.17 BSC			

PART MARKING

PART NUMBER SUSSE XYYWW LLL

PART NUMBER = REFER TO DS_PN DECODER FOR DETAILS

X = ASSEMBLY SITE YY = YEAR WW = WORK WEEK LLL = LOT ID

PACKING TYPE

ANTI-STATIC TUBE

QUANTITY / TUBE : 30 UNITS

DISCLAIMER

United Silicon Carbide, Inc. reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. United Silicon Carbide, Inc. assumes no responsibility or liability for any errors or inaccuracies within.

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

United Silicon Carbide, Inc. assumes no liability whatsoever relating to the choice, selection or use of the United Silicon Carbide, Inc. products and services described herein.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>