

SiC JFET Division

Is Now Part of

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Silicon Carbide (SiC) JFET -EliteSiC, Power N-Channel, D2PAK-7L, 1700 V, 400 mohm

Rev. C, January 2025

Description

UnitedSiC offers the high-performance G3 SiC normally-on JFET transistors. This series exhibits ultra-low on resistance ($R_{DS(ON)}$) and gate charge (Q_{G}) allowing for low conduction and switching loss. The device normally-on characteristics with low $R_{DS(ON)}$ at V_{GS} = 0 V is also ideal for current protection circuits without the need for active control, as well as for cascode operation.

Tab G (1) KS (2) S (3-7)

DATASHEET

F3N170400B7S

Features

- Typical on-resistance $R_{DS(on),typ}$ of $400m\Omega$
- Voltage controlled
- Maximum operating temperature of 175°C
- Extremely fast switching not dependent on temperature
- Low gate charge
- Low intrinsic capacitance
- RoHS compliant
- AECQ Qualified

Typical applications

- Over Current Protection Circuits
- DC-AC Inverters
- Switch mode power supplies
- Power factor correction modules
- Motor drives
- Induction heating

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		1700	V
Cata course valtage	V _{GS}	DC	-20 to +3	V
Gate-source voltage	V GS	AC ¹	-30 to +20	V
Continuous drain current ²	ı	T _C = 25°C	6.8	Α
Continuous drain current	I _D	T _C = 100°C	5.1	Α
Pulsed drain current ³	I _{DM}	T _C = 25°C	16	Α
Power dissipation	P _{tot}	T _C = 25°C	68	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T _J ,T _{STG}		-55 to 175	°C
Reflow soldering temperature	T_{solder}	reflow MSL 1	245	°C

- 1. +20V AC rating applies for turn-on pulses <200ns applied with external $R_{G} > 1\Omega$.
- 2. Limited by $T_{\text{\scriptsize J,max}}$
- 3. Pulse width t_p limited by $T_{J,max}$

Thermal Characteristics

Parameter	Symbol	Test Conditions	Value			Units
Parameter	Symbol Test Conditions	Min	Тур	Max	Offics	
Thermal resistance, junction-to-case	$R_{ heta$ JC			1.7	2.2	°C/W

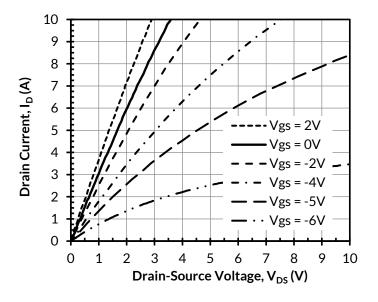
Electrical Characteristics ($T_J = +25$ °C unless otherwise specified)

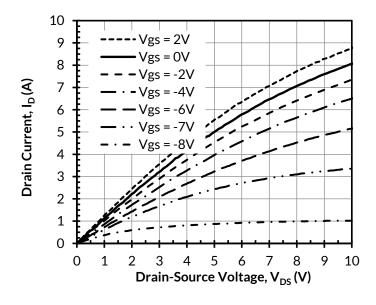
Typical Performance - Static

Parameter	Cumbal	Test Conditions		Value		Units
rai ailletei	Symbol	Test Conditions	Min	Тур	Max	Offics
Drain-source breakdown voltage	BV _{DS}	V_{GS} =-20V, I_D =0.3mA	1700			V
Total duain la cleana augusunt	I_{DSS} $V_{DS}=1700V$,	V _{DS} =1700V, V _{GS} =-20V, T _J =25°C		2.2	60	4
Total drain leakage current		V _{DS} =1700V, V _{GS} =-20V, T _J =175°C		9		μΑ
Tatal asta la cliana sumant		V _{GS} =-20V, T _J =25°C		0.15	6	μА
Total gate leakage current	I _{GSS}	V _{GS} =-20V, T _J =175°C		0.8		μА
		V _{GS} =2V, I _D =5A, T _J =25°C		350		
Drain-source on-resistance	R _{DS(on)}	V _{GS} =0V, I _D =5A, T _J =25°C		400	500	m Ω
Brain source on resistance	(On)	V_{GS} =2V, I_D =5A, T_J =175°C		928		
		V _{GS} =0V, I _D =5A, T _J =175°C		1040		
Gate threshold voltage	V _{G(th)}	V_{DS} =5V, I_D =4.5mA	-11.3	-9	-6.7	V
Gate resistance	R_{G}	f=1MHz, open drain		5		Ω

Typical Performance - Dynamic

Dayamatay	Parameter Symbol Test Conditions		Value			Units	
Parameter	Symbol	rest Conditions	Min	Тур	Max	Units	
Input capacitance	C _{iss}	V _{DS} =100V, V _{GS} =-20V		225			
Output capacitance	C_{oss}	f=100kHz		22		pF	
Reverse transfer capacitance	C_{rss}	1-100KHZ		18			
Effective output capacitance, energy related	C _{oss(er)}	V _{DS} =0V to 1200V, V _{GS} =-20V		11.4		pF	
C _{OSS} stored energy	E_{oss}	V _{DS} =1200V, V _{GS} =-20V		8.2		μJ	
Total gate charge	Q_{G}	V _{DS} =1200V, I _D =5A,		30			
Gate-drain charge	Q_{GD}	$V_{DS} = 1200 \text{ V}, V_{D} = 3 \text{ A},$ $V_{GS} = -18 \text{ V to } 0 \text{ V}$		17		nC	
Gate-source charge	Q_{GS}	VGS - 10V 10 0V		5			
Turn-on delay time	$t_{d(on)}$	V_{DS} =1200V, I_{D} =5A, Gate Driver =-18V to 0V, R_{G} =1 Ω , Inductive Load,		5			
Rise time	t_r			19		ns	
Turn-off delay time	$t_{d(off)}$			9			
Fall time	t_f			37			
Turn-on energy	E _{ON}	FWD: 2x UJ3D1210TS		125		μ	
Turn-off energy	E _{OFF}	in series T _I =25°C		38			
Total switching energy	E_TOTAL	,,		163			
Turn-on delay time	t _{d(on)}			5			
Rise time	t_r	V _{DS} =1200V, I _D =5A, Gate Driver =-18V to 0V,		16		ns	
Turn-off delay time	$t_{d(off)}$	$R_{G}=10,$ $Inductive Load,$ $FWD: 2x UJ3D1210TS$ $in series,$ $T_{J}=150^{\circ}C$		8			
Fall time	t_f			34			
Turn-on energy	E _{ON}			114			
Turn-off energy	E _{OFF}			31		μ	
Total switching energy	E_TOTAL			145			




Typical Performance Diagrams

10 9 8 Drain Current, I_D (A) 7 6 -- Vgs = 2V 5 • Vgs = 0V 4 - Vgs = -2V 3 Vgs = -4V2 Vgs = -6V1 Vgs = -7V0 1 2 Drain-Source Voltage, V_{DS} (V)

Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at $T_J = 25$ °C, $tp < 250\mu s$

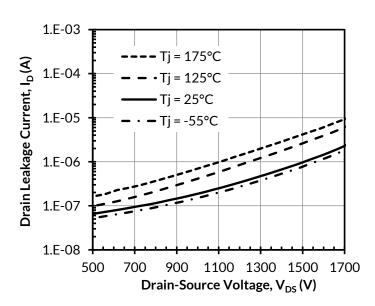
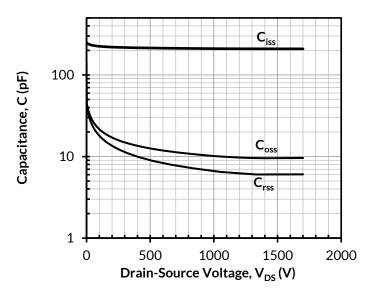


Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Typical drain-source leakage at $V_{GS} = -20V$



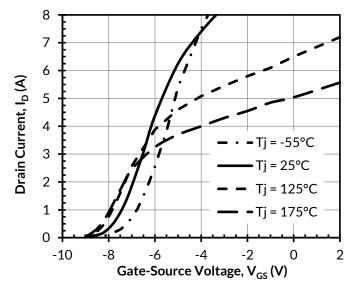
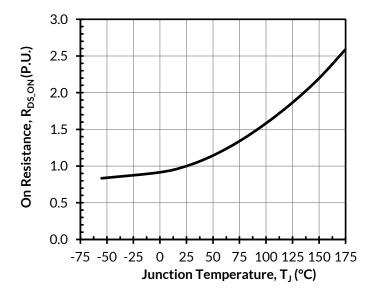



Figure 5. Typical capacitances at f = 100kHz and $V_{GS} = -20V$

Figure 6. Typical transfer characteristics at $V_{DS} = 5V$

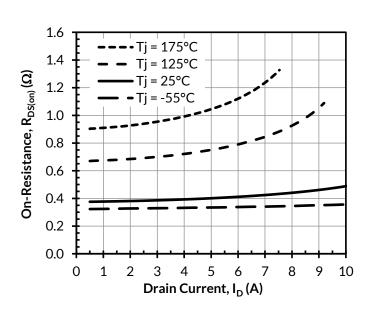
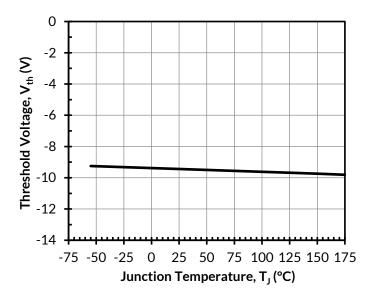
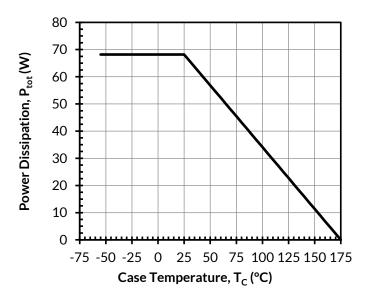


Figure 7. Normalized on-resistance vs. temperature at V_{GS} = 0V and I_D = 5A

Figure 8. Typical drain-source on-resistances at $V_{GS} = 0V$





E_{oss}(μJ) Drain-Source Voltage, V_{DS} (V)

Figure 9. Threshold voltage vs. junction temperature at V_{DS} = 5V and I_{D} = 4.5mA

Figure 10. Typical stored energy in C_{OSS} at V_{GS} = -20V

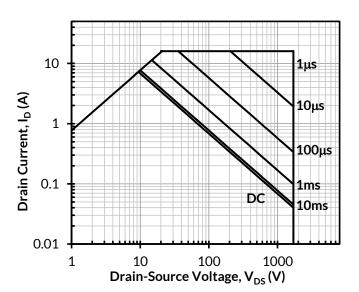
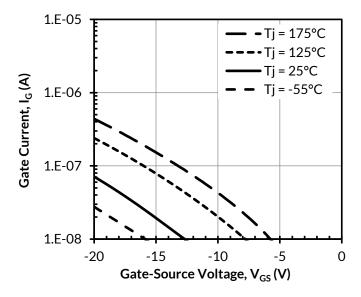
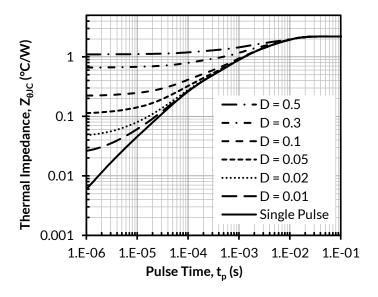


Figure 11. Total power Dissipation

Figure 12. Safe operation area at T_C =25°C, Parameter t_p





1.0 Tj = 175°C Tj = 125°C 8.0 Gate Current, I_G (A) Tj = 25°C Tj = -55°C 0.6 0.4 0.2 0.0 1 2 0 5 Gate-Source Voltage, $V_{GS}(V)$

Figure 13. Typical gate leakage at $V_{DS} = 0V$

Figure 14. Typical gate forward current at $V_{DS} = 0V$

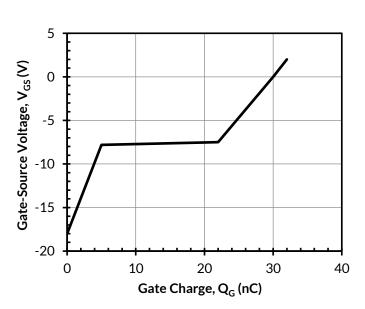
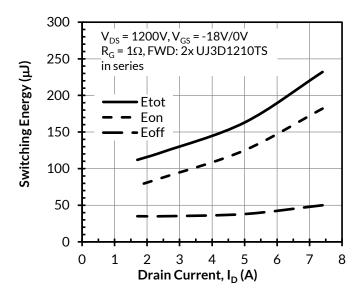


Figure 15. Maximum transient thermal impedance

Figure 16. Typical gate charge at V_{DS} = 1200V and I_{D} = 5A



350 Etot 300 Eon Switching Energy (µJ) **Eoff** 250 200 150 $V_{DS} = 1200V, V_{GS} = -18V/0V$ $I_{D} = 5A, T_{J} = 25^{\circ}C$ 100 FWD: 2x UJ3D1210TS in series 50 0 5 10 15 20 0 25 Gate Resistor $R_G(\Omega)$

Figure 17. Clamped inductive switching energy vs. drain current at $T_J = 25$ °C

Figure 18. Clamped inductive switching energy vs. gate resistor R_{G}

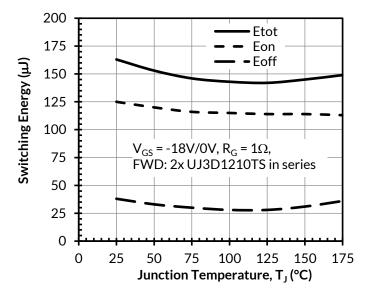
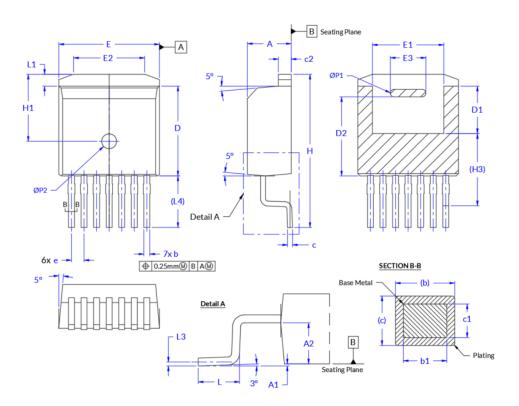


Figure 19. Clamped inductive switching energy vs. junction temperature at V_{DS} = 1200V and I_D = 5A

Disclaimer

UnitedSiC reserves the right to change or modify any of the products and their inherent physical and technical specifications without prior notice. UnitedSiC assumes no responsibility or liability for any errors or inaccuracies within.

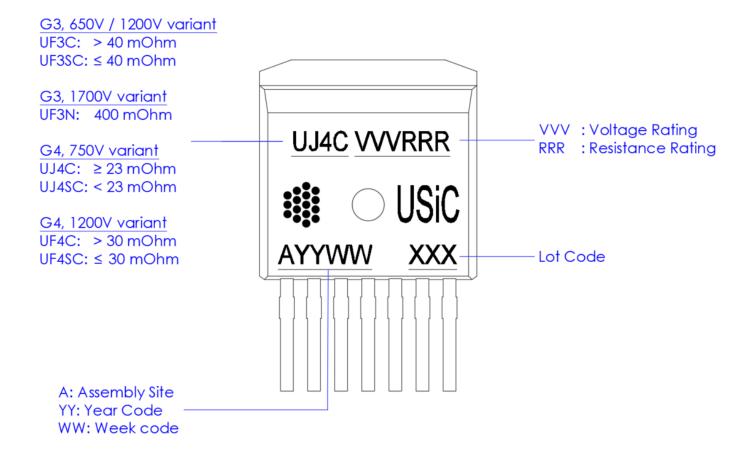

Information on all products and contained herein is intended for description only. No license, express or implied, to any intellectual property rights is granted within this document.

UnitedSiC assumes no liability whatsoever relating to the choice, selection or use of the UnitedSiC products and services described herein.

TO263-7L (D2PAK-7L) PACKAGE OUTLINE, MARKING, TAPE AND REEL SPECIFICATION	PART	Page 1 of 4
DS TO 263 71		Rev D

PACKAGE OUTLINE

	7L-D2PAK				
SYM	М	M	IN	CH	
31141	Min	Max	Min	Max	
Α	4.30	4.56	.169	.180	
A1	0.00	0.25	.000	.010	
A2	2.45	2.75	.096	.108	
b	0.50	0.70	.020	.028	
b1	0.50	-	.020	-	
С	0.40	0.60	.016	.024	
c1	0.40		.016		
c2	1.20	1.40	.047	.055	
D	8.93	9.23	.352	.363	
D1	4.65	4.95	.183	.195	
D2	7.90	8.10	.311	.319	
e	1.27	BSC	.050	BSC	
E	10.08	10.28	.397	.405	
E1	6.82	7.62	.269	.300	
E2	6.50	8.60	.256	.339	
E3	3.50	3.70	.138	.146	
Н	15.00	16.00	.591	.630	
H1	6.68	6.88	.263	.271	
H3	7.31	REF.	.287	REF	
L	1.90	2.50	.075	.098	
L1	0.98	1.42	.039	.056	
L3	0.25	BSC	.0098	BSC	
L4	5.22	REF	.205	REF	
ØP1	0.65	0.85	.026	.033	
ØP2	1.40	1.60	.055	.063	


Notes:

- 1. GENERAL TOLERANCE: ±0.1 unless otherwise specified
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. PACKAGE BODY SIDES EXCLUDE MOLD FLASH AND GATE BURRS.
- 4. DIMENSION LIS MEASURED IN GAUGE LINE.
- 5. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.
- 6. DIMENSION c1 AND b1 APPLIES TO BASE METAL ONLY

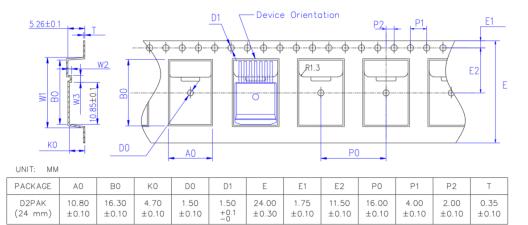
TO263-7L (D2PAK-7L) PACKAGE OUTLINE, PART MARKING, TAPE AND REEL SPECIFICATION	Page 2 of 4
DS_TO_263_7L	Rev D

PART MARKING

Template: FOR-000530 Rev G

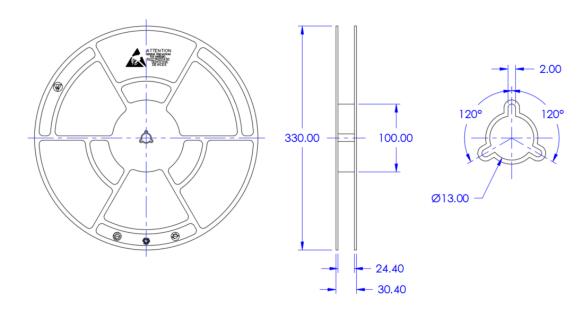
TO263-7L	(D2PAK-7L)	PACKAGE	OUTLINE,	PART
MARKING,	TAPE AND RE	EL SPECIFIC	ATION	

TO 000 7


Page **3** of **4**

Rev D

DS_TO_263_7L


PACKING TYPE

Carrier Tape

Ext	erior	size	
	W1	16.9±0.1	
Spec	W2	1.3±0.1	
'	W3	1.0±0.1	
	W1	17.2±0.1	(1)
Spec 2	W2	1.8±0.1	(b)
	W3	0.85±0.1	0

Reel

All dimensions in millimeters Anti-Static Tape and Rell (T&R) Quantity per Reel: 800 units

DISCLAIMER

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein, or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regards to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, lifesaving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

REVISION HISTORY

Revision	Create Date (mm/dd/yyyy)	Description of Change	Initiator of Change
С	11/06/2023	Updated to Qorvo template Updated Package outline drawing based latest drawing revision	Glenn Galang
D	05/21/2024	Added illustration of device orientation on carrier tape (page 3)	Glenn Galang

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales