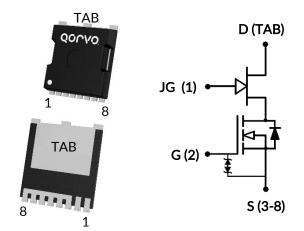


SiC JFET Division

Is Now Part of

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,



G4SC075005L8S

Part Number	Package	Marking
UG4SC075005L8S	MO-229	UG4SC075005

Silicon Carbide (SiC) Combo JFET -EliteSiC, Power N-Channel, TOLL, 750 V, 5 mohm

Preliminary, January 2025

Description

Qorvo's UG4SC075005L8S "Combo-FET" integrates both a 750V SiC JFET and a Low Voltage Si MOSFET into a single TOLL package. This innovative approach allows users to create circuitry that would enable a normally-off switch while leveraging the benefits of a normally-on SiC JFET. These benefits include ultra-low on-resistance (R_{DS(on)}) to minimize conduction losses and the exceptional robustness characteristic of a simplified JFET device structure, making it capable of handling the high-energy switching required in circuit protection applications. For switch-mode power conversion application, this device provides separate access to the JFET and MOSFET gates for improved speed control and ease of paralleling multiple devices.

Features

- ◆ Single digit R_{DS(on)}
- Normally-off capability
- Improved speed control
- Improved parallel device operation (3+ FETs)
- Operating temperature: 175°C (max)
- High pulse current capability
- Excellent device robustness
- Silver-sintered die attach for excellent thermal resistance
- Short circuit rated

Typical applications

- Solid State / Semiconductor Circuit Breaker
- Solid State / Semiconductor Relay
- Battery Disconnects
- Surge Protection
- Inrush Current Control
- High power switch mode converters (>25kW)

Maximum Ratings

Parameter	Symbol	Test Conditions	Value	Units
Drain-source voltage	V_{DS}		750	V
JFET Gate (JG) to source voltage	V_{JGS}	DC	-30 to +3	V
Ji Li Gate (JG) to source voltage	V JGS	AC ¹	-30 to +30	V
MOSFET Gate (G) to source voltage	V_{GS}	DC	-20 to +20	V
WOSI ET Gate (G) to source voltage	V GS	AC (f > 1Hz)	-25 to +25	V
Continuous drain current ²	I _D	T _C < 144°C	120	Α
Pulsed drain current ³	I _{DM}	T _C = 25°C	588	А
Single pulsed avalanche energy ⁴	E _{AS}	L=15mH, I _{AS} = 6.5A	316	mJ
Power dissipation	P _{tot}	T _C = 25°C	1153	W
Maximum junction temperature	$T_{J,max}$		175	°C
Operating and storage temperature	T_J , T_{STG}		-55 to 175	°C
Reflow soldering temperature	T_{solder}	reflow MSL 1	260	°C

- 1. +30V AC rating applies for turn-on pulses <200ns applied with external R_{G} > $1\Omega.$
- 2. Limited by bondwires
- 3. Pulse width t_p limited by $T_{J,max}$
- 4. Starting $T_J = 25$ °C

Thermal Characteristics

Parameter	Parameter Symbol Test Conditions			Value		Units
raiailletei	Зуппоот	rest Conditions	Min	Тур	Max	Units
Thermal resistance, junction-to-case	$R_{\scriptscriptstyle{ heta JC}}$			0.10	0.13	°C/W

Electrical Characteristics ($T_J = +25$ °C and $V_{JGS} = 0V$ unless otherwise specified)

Typical Performance - Static

				Value		
Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Drain-source breakdown voltage	BV _{DS}	V _{GS} =0V, I _D =1mA	750			V
Takal duain lankana assumant		V_{DS} =750V, V_{GS} =0V, T_{J} =25°C		6	130	
Total drain leakage current	I _{DSS}	V _{DS} =750V, V _{GS} =0V, T _J =175°C		45		- μΑ
Total JFET gate leakage current	I _{JGSS}	V _{GS} =-20V, V _{GS} =12V		0.1	100	μА
Total MOSFET gate leakage current	I _{GSS}	V _{GS} =-20V / +20V		6	20	μА
	D	V_{GS} =15V, V_{JGS} =2V, I_{D} =80A, T_{J} =25°C		5.0		
Drain-source on-resistance		V_{GS} =15V, V_{JGS} =0V, I_D =80A, T_J =25°C		5.4	7.2	mΩ
Drain source on resistance	R _{DS(on)}	V_{GS} =15V, V_{JGS} =0V, I_{D} =80A, T_{J} =125°C		9.3		11122
		V _{GS} =15V, V _{JGS} =0V, I _D =80A, T _J =175°C		12.2		
JFET gate threshold voltage	$V_{JG(th)}$	V _{DS} =5V, V _{GS} =12V, I _D =180mA	-8.3	-6.0	-3.7	V
MOSFET gate threshold voltage	V _{G(th)}	V _{DS} =5V, I _D =10mA	4	4.7	6	V
JFET gate resistance	R_{JG}	f=1MHz, open drain		0.8		Ω
MOSFET gate resistance	R_{G}	f=1MHz, open drain		0.8		Ω

Typical Performance - Reverse Diode

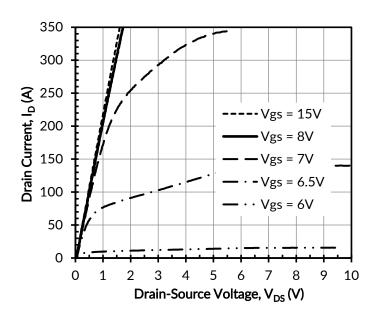
Danamaskan	Symbol Test Conditions		Value			1.1-26-
Parameter	Symbol	rest Conditions	Min	Тур	Max	Units
Diode continuous forward current ¹	I _S	T _C < 144°C			120	Α
Diode pulse current ²	I _{S,pulse}	T _C = 25°C			588	Α
Forward voltage	V	V _{GS} =0V, I _S =50A, T _J =25°C		1.03	1.16	V
Forward Voltage	V _{FSD}	V _{GS} =0V, I _S =50A, T _J =175°C		1.06		, v
Reverse recovery charge	Q _{rr}	V_{DS} =400V, I_{S} =80A, V_{GS} =0V, V_{JGS} =0V, R_{JG} =0.7 Ω ,		377		nC
Reverse recovery time	t _{rr}	di/dt=2400A/μs, Τ _J =25°C		70		ns
Reverse recovery charge	Q _{rr}	V_{DS} =400V, I_{S} =80A, V_{GS} =0V, V_{JGS} =0V, R_{JG} =0.7 Ω ,		427		nC
Reverse recovery time	t _{rr}	di/dt=2400A/μs, Τ _J =150°C		78		ns

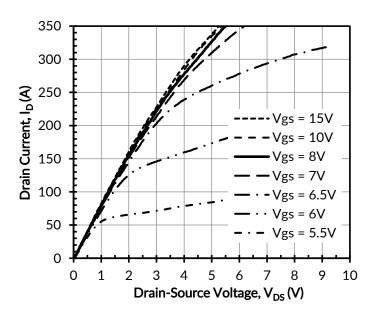
Typical Performance - Dynamic with MOSFET gate as control terminal and V_{JGS} =0V

Parameter	Symbol Test Conditions			Value		Units
Parameter	Syllibol	rest Conditions	Min	Тур	Max	Offics
MOSFET input capacitance	C _{iss}	\/ -400\/ \/ -0\/		8374		
Output capacitance	C _{oss}	V _{DS} =400V, V _{GS} =0V, f=100kHz		362		pF
Reverse transfer capacitance	C _{rss}	T=100KHZ		4		
Effective output capacitance, energy	C			475		nE
related	C _{oss(er)}	V_{DS} =0V to 400V,		4/3		pF
Effective output capacitance, time	C _{oss(tr)}	V _{GS} =0V		950		pF
related	Oss(tr)			750		Pi
Total Gate charge	Q_G	\/ -400\/ -904		164		
Gate-drain charge	Q_{GD}	V_{DS} =400V, I_{D} =80A, V_{GS} = 0V to 15V		24		nC
Gate-source charge	Q_{GS}	V _{GS} – UV tO 13V		46		

Typical Performance - Dynamic with JFET gate as control terminal and V_{GS} =+12V

Parameter	Symbol Test Conditions			Value		Units
rarameter 	Syllibol	rest Conditions	Min	Тур	Max	Offics
JFET input capacitance	C_{Jiss}	V _{DS} =400V, V _{JGS} =-20V,		3028		
JFET output capacitance	C _{Joss}	f=100kHz		364		pF
JFET reverse transfer capacitance	C_{Jrss}			360		
JFET total gate charge	Q_{JG}	V 400V I 00A		400		
JFET gate-drain charge	Q_{JGD}	V_{DS} =400V, I_{D} =80A, V_{IGS} = -18V to 0V		270		nC
JFET gate-source charge	Q_{JGS}	V _{JGS} – -18V to 0V		60		




Typical Performance Diagrams - MOSFET gate as control terminal and V_{JGS}=0V

350 300 Drain Current, I_D (A) 250 200 Vgs = 15VVgs = 10V 150 Vgs = 8VVgs = 7V100 - Vgs = 6.5V 50 Vgs = 6V 0 5 6 9 10 0 1 2 3 4 Drain-Source Voltage, V_{DS} (V)

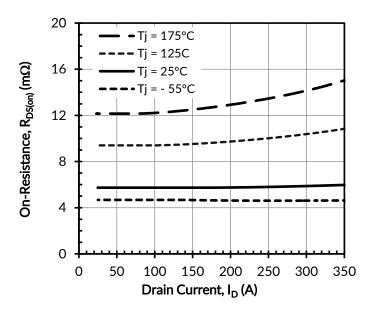
Figure 1. Typical output characteristics at T_J = - 55°C, tp < 250 μ s

Figure 2. Typical output characteristics at T_J = 25°C, tp < 250 μ s

2.5 2.0 2.0 2.0 2.0 2.5 1.5 1.0 0.5 0.0 -75 -50 -25 0 25 50 75 100 125 150 175 Junction Temperature, T_J (°C)

Figure 3. Typical output characteristics at T_J = 175°C, tp < 250 μ s

Figure 4. Normalized on-resistance vs. temperature at V_{GS} = 12V and I_{D} = 80A



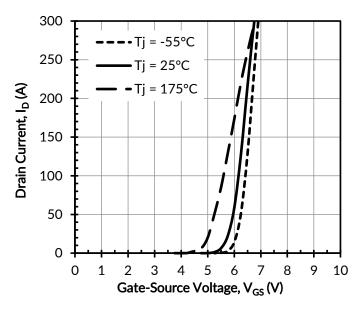
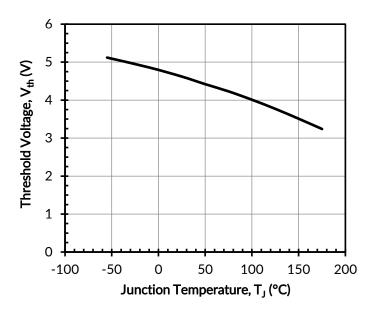
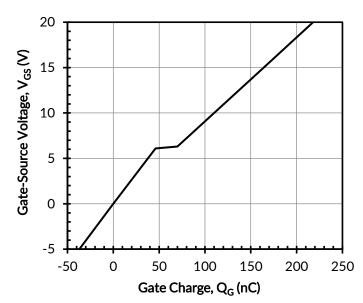




Figure 5. Typical drain-source on-resistances at V_{GS} = 12V

Figure 6. Typical transfer characteristics at $V_{DS} = 5V$

 $V_{DS} = 5V$ and $I_D = 10mA$

Figure 7. Threshold voltage vs. junction temperature at I_D Figure 8. Typical gate charge at I_D = 400V and I_D = 80A

0

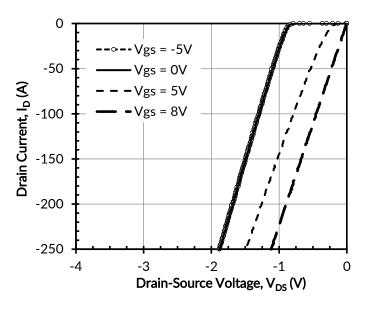
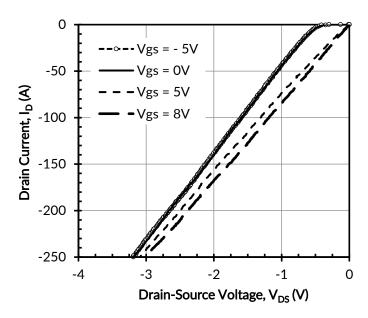



Figure 9. 3rd quadrant characteristics at $T_J = -55$ °C

Figure 10. 3rd quadrant characteristics at $T_J = 25$ °C

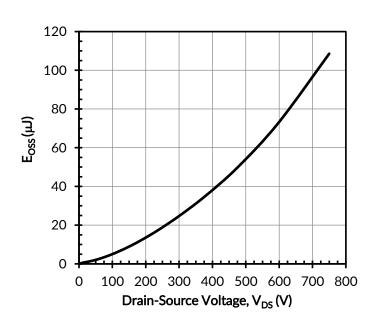
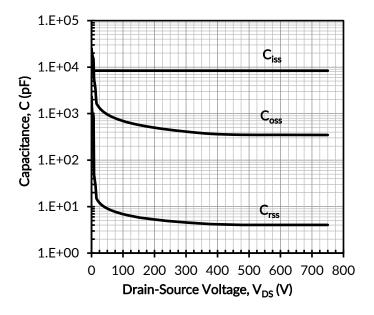
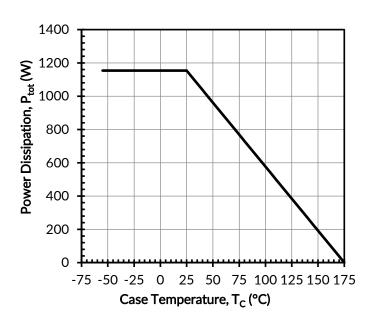


Figure 11. 3rd quadrant characteristics at $T_J = 175$ °C

Figure 12. Typical stored energy in C_{OSS} at $V_{GS} = 0V$

140





120 DC Drain Current, I_D (A) 100 80 60 40 20 -75 -50 -25 0 25 50 75 100 125 150 175 Case Temperature, T_C (°C)

Figure 13. Typical capacitances at f = 100kHz and V_{GS} = 0V

Figure 14. DC drain current derating

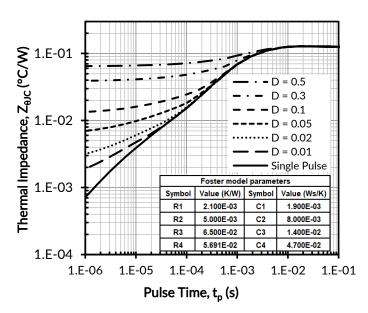
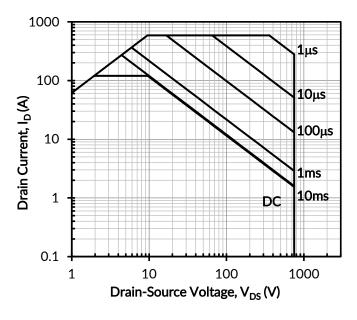
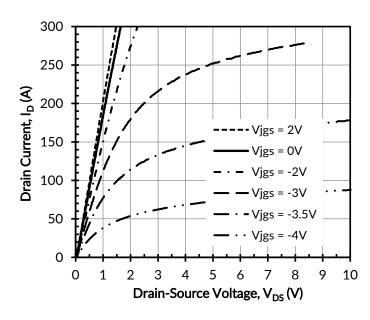


Figure 15. Total power dissipation

Figure 16. Maximum transient thermal impedance





 $V_{DS} = 400V, I_{S} = 80A,$ $di/dt = 2400A/\mu s$, $V_{GS} = 0V$, $V_{JGS} = 0V$, $R_{JG} = 0.7\Omega$ Junction Temperature, T_J (°C)

Figure 17. Safe operation area at T_C = 25°C, D = 0, Parameter t_D

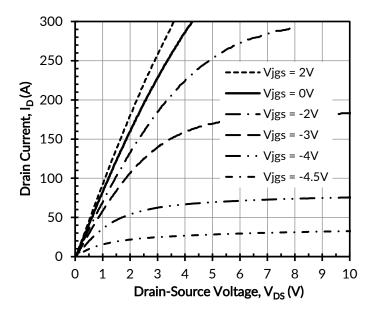
Figure 18. Reverse recovery charge Qrr vs. junction temperature

Typical Performance Diagrams - JFET gate as control terminal and V_{GS} =+12V

Drain Current, I_D (A) Vjgs = 2V Vjgs = 0V Vjgs = -1VVjgs = -2VVigs = -3VVjgs = -4VDrain-Source Voltage, V_{DS} (V)

Figure 19. Typical output characteristics with JFET gate as control at T_J = - 55°C, t_p < 250 μs

Figure 20. Typical output characteristics with JFET gate as control at T_J = 25°C, t_p < 250 μ s



3 0 Gate-Source Voltage, V_{JGS} (V) -3 -6 -9 -12 -15 -18 200 300 400 0 100 500 JFET Gate Charge, Q_{JG} (nC)

Figure 21. Typical output characteristics with JFET gate as control at T_J = 175°C, t_p < 250 μs

Figure 22. Typical JFET gate charge at V_{DS} = 400V and $I_{D} = 80A$

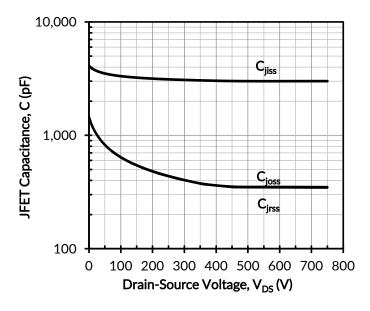
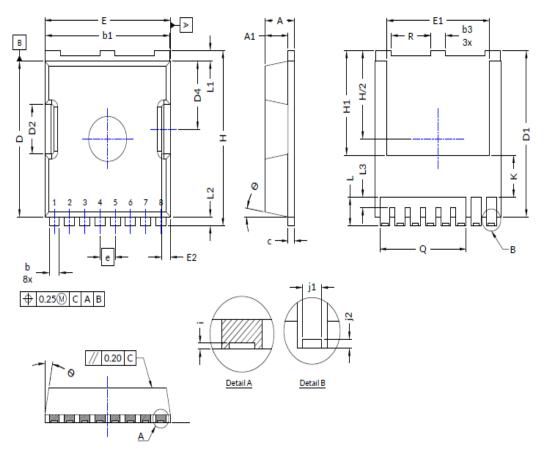


Figure 23. Typical JFET capacitances at f = 100kHz and $V_{JGS} = -20V$



Package Outlines

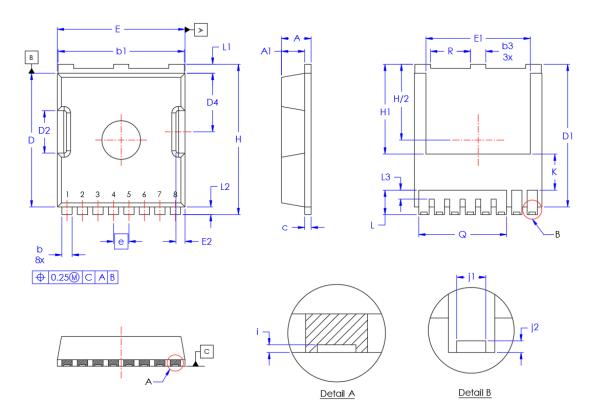
TO-LL					
SYMBOL		Value			
STMBOL	Min	Nom	Max		
Α	2.15	2.30	2.45		
A1		1.80 REF			
b	0.70	0.80	0.90		
b1	9.65	9.80	9.95		
b3	1.10	1.20	1.30		
С	0.40	0.50	0.60		
D	10.18	10.38	10.58		
D1	10.98	11.08	11.18		
D2	3.15	3.30	3.45		
D4	4.40	4.55	4.70		
E	9.70	9.90	10.10		
E1	7.95	8.10	8.25		
E2	0.60	0.70	0.80		
e		1.20 BSC			
Н	11.48	11.68	11.88		
H1	6.80	6.95	7.10		
i		0.10 REF			
j1		0.46 REF			
j2		0.20 REF			
K		2.80 REF			
L	1.40	1.90	2.10		
L1	0.50	0.70	0.90		
L2	0.48	0.60	0.72		
L3	0.30	0.70	0.80		
Q		6.80 REF			
R	3.00	3.10	3.20		
θ		10°			

Note:

- All dimensions in millimeters 1.
- Dimensions does not include Burrs and Mold Flashes
- Dimensions in compliance with JEDEC MO-299B except for backside heatsink exposed pad dimension, E1 and H1

Pin Designations:

- 1:Gate
- 2: Source Kelvin
- 3-8: Source

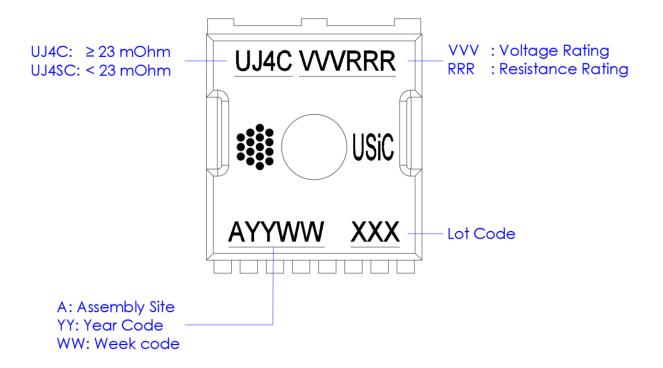

Important notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

TOLL PACKAGE OUTLINE, PART MARKING, TAPE AND REEL SPECIFICATION	Page 1 of 4
DS_TOLL	Rev B

PACKAGE OUTLINE

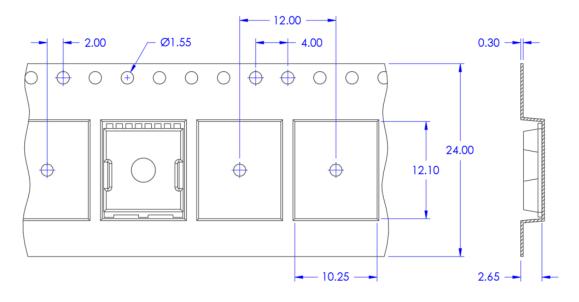
TO-LL				
SYMBOL	Value			
	Min	Max		
Α	2.15	2.45		
Al	1.80	REF		
b	0.65	0.90		
bl	9.65	9.95		
b3	1.10	1.30		
С	0.40	0.60		
D	10.18	10.58		
DI	10.88	11.28		
D2	3.15	3.45		
D4	4.40	4.70		
Е	9.70	10.10		
El	7.95	8.25		
E2	0.60 0.80			
е	1.20	BSC		
Н	11.48	11.88		
HI	6.80	7.10		
i	0.10	REF		
jl	0.46	REF		
j2	0.20	REF		
K	2.80	REF		
L	1.40	2.10		
Ll	0.50	0.90		
L2	0.48	0.72		
L3	0.30	0.80		
Q	6.80	REF		
R	3.00	3 20		

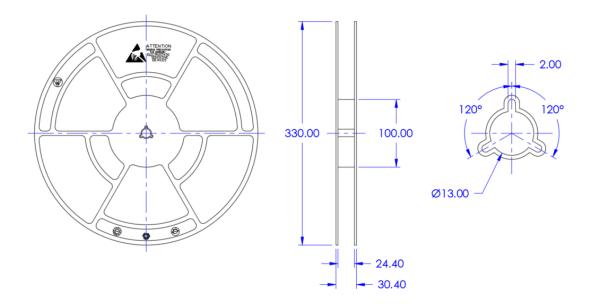

Note:

- 1. All dimensions in millimeters
- 2. Dimensions does not include Burrs and Mold Flashes

TOLL PACKAGE OUTLINE, PART MARKING, TAPE AND REEL SPECIFICATION	Page 2 of 4
DS_TOLL	Rev B

PART MARKING


Template: FOR-000530 Rev G


TOLL PACKAGE OUTLINE, PART MARKING, TAPE AND REEL SPECIFICATION	Page 3 of 4
DS_TOLL	Rev B

PACKING TYPE

Carrier Tape

Reel

All dimensions in millimeters Quantity per Reel: 2000 units

DISCLAIMER

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein, or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regards to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, lifesaving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

REVISION HISTORY

Revision	Create Date (mm/dd/yyyy)	Description of Change	Initiator of Change
Α	10/13/2023	Initial Production Release	Glenn Galang
В	01/31/2024	Corrected device orientation inside carrier tape pocket (Page 3)	Glenn Galang

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales