

MOSFET - Power, DUAL COOL® N-Channel, DFN8 5x6 40 V, 0.85 mΩ, 316 A NVMFSCOD9N04CL

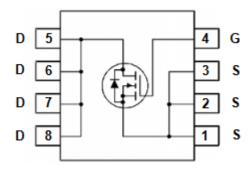
Features

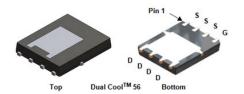
- Advanced Dual-sided Cooled Packaging
- Small Footprint (5x6 mm) for Compact Design
- Ulra Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant
- MSL1 Robust Packaging Design

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V _{DSS}	40	V
Gate-to-Source Voltage	Э		V _{GS}	±20	V
Continuous Drain	Steady State	T _C = 25°C	I _D	316	Α
Current R _{0JC} (Note 2)	State	T _C = 100°C	I _D	224	Α
Power Dissipation	Steady State	T _C = 25°C	P_{D}	166	W
R _{θJC} (Note 2)	State	T _C = 100°C	P_{D}	83	W
Continuous Drain	Steady State	T _A = 25°C	I _D	50	Α
Current R _{0JA} (Notes 1, 2)	State	T _A = 100°C	I _D	35	Α
Power Dissipation	Steady	T _A = 25°C	P_{D}	4.1	W
R _{θJA} (Notes 1, 2)	State	T _A = 100°C	P _D	2.0	W
Pulsed Drain Current	rent $T_A = 25^{\circ}C, t_p = 10 \mu s$			900	Α
Operating Junction and Storage Temperature Range			T _J , T _{stg}	-55 to +175	°C
Source Current (Body Diode)			Is	138	Α
Single Pulse Drain-to-Source Avalanche Energy (I _{L(pk)} = 29 A)			E _{AS}	706	mJ
Lead Temperature Soldering Reflow for Soldering Purposes (1/8" from case for 10 s)			TL	300	°C

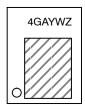
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE MAXIMUM RATINGS


Parameter	Symbol	Value	Unit
Junction-to-Case (Bottom)- Steady State (Note 2)	$R_{\theta JC}$	0.9	°C/W
Junction-to-Case (Top) - Steady State (Note 2)	$R_{\theta JC}$	1.4	
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	37	

- 1. Surface-mounted on FR4 board using a 1 in² pad size, 1 oz Cu pad.
- The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX	
40 V	0.85 m Ω @ 10 V	316 A	
40 V	1.3 mΩ @ 4.5 V	310 A	


N-Channel MOSFET

DFN8/DFNW8 (SO8FL) CASES 506EG & 507BC

MARKING DIAGRAM

4G = Specific Device Code A = Assembly Location

Y = Year W = Work Week

Z = Assembly Lot Code

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condi	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS					•	•	
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		40			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /	I _D = 250 μA, ref to 25°C			5		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 \text{ V}, \qquad T_{J} = 25^{\circ}\text{C}$				10	μΑ
		$V_{DS} = 40 \text{ V}$	T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= +20 V			100	nA
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D =$	= 250 μA	1.2		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	I _D = 250 μA, ref	to 25°C		-8.6		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 50 A		0.69	0.85	mΩ
		V _{GS} = 4.5 V	I _D = 50 A		1.0	1.3	
CHARGES & CAPACITANCES							
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V, f} = 1 \text{ MHz, } V_{DS} = 25 \text{ V}$			8860		pF
Output Capacitance	C _{OSS}				3400		
Reverse Transfer Capacitance	C _{RSS}				90		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 20 V; I _D = 50 A			135		nC
Gate-to-Source Charge	Q _{GS}				23		1
Gate-to-Drain Charge	Q_{GD}				17		1
Plateau Voltage	V_{GP}				2.9		V
SWITCHING CHARACTERISTICS (Note 3)	•				•	•	
Turn-On Delay Time	t _{d(ON)}	$V_{GS} = 10 \text{ V}, V_{DS}$	S = 32 V,		54		ns
Rise Time	t _r	$I_D = 50 \text{ A}, R_G$	= 2.5 Ω		160		
Turn-Off Delay Time	t _{d(OFF)}				220		
Fall Time	t _f				170		
DRAIN-SOURCE DIODE CHARACTERISTIC	s					•	
Forward Diode Voltage	V_{SD}	$V_{GS} = 0 V$,	T _J = 25°C		0.8	1.2	V
		I _S = 50 A	T _J = 125°C		0.65		1
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V, } dI_S/dt =$	= 100 A/μs,		91		ns
Charge Time	t _a	I _S = 50 A			42		1
Discharge Time	t _b				49		1
Reverse Recovery Charge	Q _{RR}				159		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

3. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

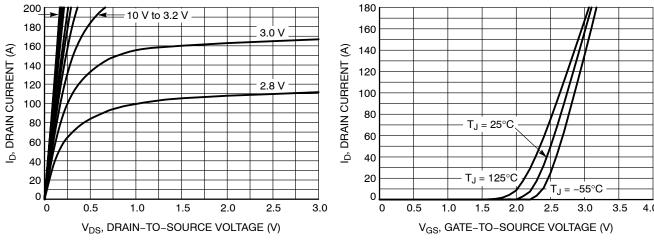


Figure 1. On-Region Characteristics

Figure 2. Transfer Characteristics

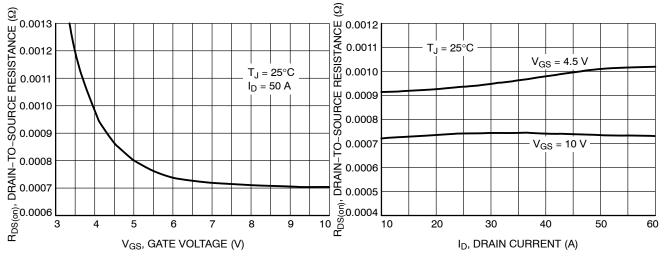


Figure 3. On-Resistance vs. Gate-to-Source Voltage

Figure 4. On-Resistance vs. Drain Current and Gate Voltage

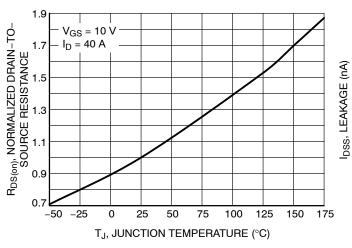


Figure 5. On–Resistance Variation with Temperature

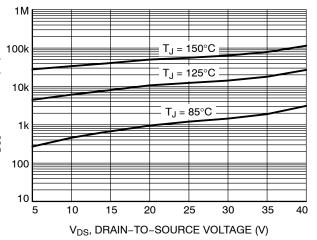


Figure 6. Drain-to-Source Leakage Current vs. Voltage

TYPICAL CHARACTERISTICS

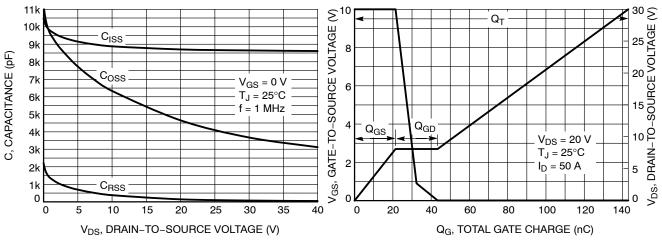


Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

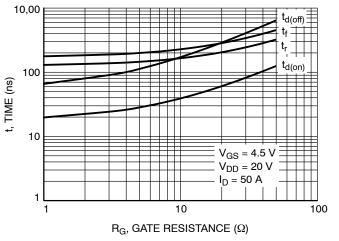


Figure 9. Resistive Switching Time Variation vs. Gate Resistance

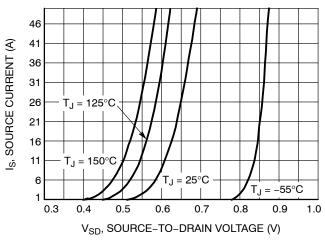


Figure 10. Diode Forward Voltage vs. Current

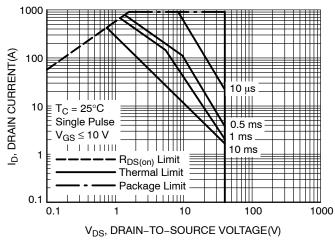


Figure 11. Safe Operating Area

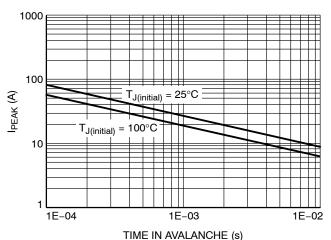


Figure 12. I_{PEAK} vs. Time in Avalanche

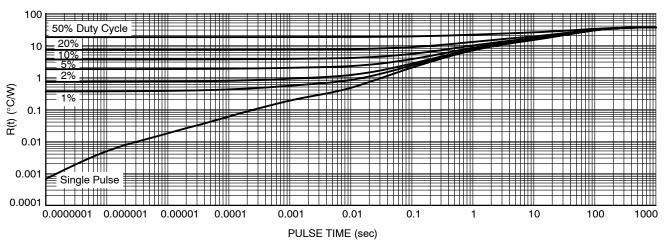


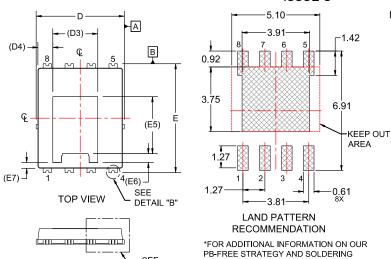
Figure 13. Thermal Characteristics

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NVMFSC0D9N04CL	4G	DFN8 5x6 (Pb-Free/Halogen Free)	3000 / Tape & Reel
NVMFWSC0D9N04CL	410LWC	DFNW8 5x6 (Pb-Free/Halogen Free, Wettable Flank)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DUAL COOL is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.


PACKAGE DIMENSIONS

DFNW8 (SO8FL) 5.0x6.3, 1.27P

CASE 507BC ISSUE O

DETAILS, PLEASE DOWNLOAD THE ON

SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE

DETAIL "A"

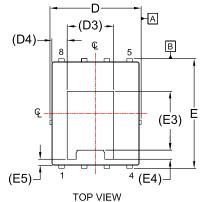
FRONT VIEW

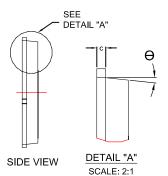
BOTTOM VIEW

MANUAL, SOLDERRM/D. e1 b2 (4X) е // 0.10 C b (8X) ○ 0.08 C b1 (8X)→ SEATING **PLANE** DETAIL "A" SCALE: 2:1 PLATED AREA E1 e2 | E2 PLATED SURFACES -L2 (8X) L1 **DETAIL "B"** SCALE: 2:1

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS. "A1" IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

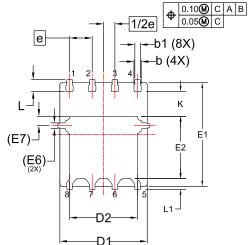

THE PACKAGE BODT.					
DIM	MILLIMETERS				
	MIN.	NOM.	MAX.		
Α	0.80	0.90	1.00		
A1	0.00	-	0.05		
A2	0.00	1	0.05		
b	0.45	0.50	0.55		
b1	0.13	0.18	0.23		
b2	0.50	0.55	0.60		
С	0.22	0.27	0.32		
D	4.90	5.00	5.10		
D1	4.80	4.90	5.00		
D2	3.67	3.82	3.97		
D3	2.60 REF				
D4	0.86 REF				
E	6.20	6.30	6.40		
E1	5.70	5.80	5.90		
E2	3.38	3.48	3.58		
E3	0.25	0.30	0.35		
E4	0.45	0.50	0.55		
E5	;	3.30 REF			
E6	- 1	0.50 REF			
E7	(0.34 REF			
е	1	1.27 BSC			
e1	0	.635 BS0	O		
e2	1	0.52 BSC			
k	1.30	1.40	1.50		
L	0.64	0.74	0.84		
L1	0.59	0.69	0.79		
L2	0.08	0.13	0.18		
θ	0°		12°		

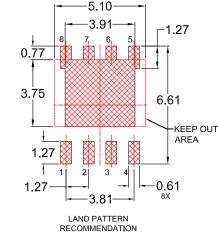


DFN8 5x6.15, 1.27P, DUAL COOL

CASE 506EG ISSUE D

DATE 25 AUG 2020

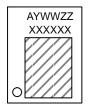

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE EXPOSED PADS AS WELL AS THE TERMINALS.

SEATING PLANE

- 4. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.
- 5. SEATING PLANE IS DEFINED BY THE TERMINALS.
 "A1" IS DEFINED AS THE DISTANCE FROM THE
 SEATING PLANE TO THE LOWEST POINT ON THE
 PACKAGE BODY.

	// 0.10 C	Θ
FRONT VIEW SEE	8X A	A1 ,
DETAIL "B"	O.10 C DETAIL "B"	C


SCALE: 2:1

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRMD.

DIM	MILLIMETERS		
Divi	MIN.	NOM.	MAX.
Α	0.85	0.90	0.95
A1	-	-	0.05
A2	ı	-	0.05
b	0.31	0.41	0.51
b1	0.21	0.31	0.41
С	0.20	0.25	0.30
D	4.90	5.00	5.10
D1	4.80	4.90	5.00
D2	3.67	3.82	3.97
D3	2.60 REF		
D4	0.86 REF		
E	6.05	6.15	6.25
E1	5.70	5.80	5.90
E2	3.38	3.48	3.58
E3	•	3.30 REF	
E4	Ī	0.50 REF	
E5	Û	0.34 REF	:
E6	(0.30 REF	:
E7	-	0.52 REF	:
е	1.27 BSC		
1/2e	0.635 BSC		
K	1.30	1.40	1.50
L	0.56	0.66	0.76
L1	0.52	0.62	0.72
θ	0°		12°

GENERIC MARKING DIAGRAM*

BOTTOM VIEW

XXXX = Specific Device Code

A = Assembly Location

Y = Year

WW = Work Week

ZZ = Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON84257G	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DFN8 5x6.15, 1.27P, DUAL COOL		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales