

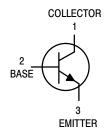
Amplifier Transistors

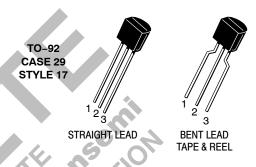
NPN Silicon

BC546B, BC547A, B, C, BC548B, C

Features

• Pb-Free Packages are Available*


MAXIMUM RATINGS


Rating	Symbol	Value	Unit
Collector - Emitter Voltage BC546 BC547 BC548		65 45 30	Vdc
Collector - Base Voltage BC546 BC547 BC548		80 50 30	Vdc
Emitter - Base Voltage	V _{EBO}	6.0	Vdc
Collector Current - Continuous	Ic	100	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	P _D	625 5.0	mW mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	Pb	1.5 12	W mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	200	°C/W
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	83.3	°C/W

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

MARKING DIAGRAM

x = 6, 7, or 8y = A, B or C

A = Assembly Location

Y = Year WW = Work Week Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						· L
Collector – Emitter Breakdown Voltage		V _{(BR)CEO}				V
(I _C = 1.0 mA, I _B = 0)	BC546	· (BH)CEO	65	_	_	
- ,	BC547		45	_	_	
	BC548		30	-	-	
Collector - Base Breakdown Voltage		$V_{(BR)CBO}$				V
$(I_C = 100 \mu\text{Adc})$	BC546	, ,	80	-	_	
	BC547 BC548		50 30	_	_	
Figure Book Book de la Vellecci	B0040					
Emitter – Base Breakdown Voltage ($I_E = 10 \mu A, I_C = 0$)	BC546	$V_{(BR)EBO}$	6.0			V
$(1E - 10 \mu \text{M}, 1C - 0)$	BC547		6.0	_	_	
	BC548		6.0	_	-	
Collector Cutoff Current		I _{CES}				
$(V_{CE} = 70 \text{ V}, V_{BE} = 0)$	BC546	JOES	7	0.2	15	nA
$(V_{CE} = 50 \text{ V}, V_{BE} = 0)$	BC547		- 4	0.2	15	
$(V_{CE} = 35 \text{ V}, V_{BE} = 0)$	BC548		7	0.2	15	
(V _{CE} = 30 V, T _A = 125°C)	BC546/547/548			-	4.0	μΑ
ON CHARACTERISTICS						_
DC Current Gain		h _{FE}				-
$(I_C = 10 \mu A, V_{CE} = 5.0 V)$	BC547A		-	90	-	
	BC546B/547B/548B BC548C			150 270	_	
	D03400			270	_	
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC546		110	_	450	
	BC547		110	_	800	
	BC548 BC547A	$O_{\lambda} = 0$	110	7 – 180	800 220	
	BC546B/547B/548B		110 200	290	450	
	BC547C/BC548C	40	420	520	800	
	O Y 4	4 4				
$(I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC547A/548A BC546B/547B/548B		_	120	_	
	BC546B/547B/546B	Q- '	_	180 300	_	
Collector - Emitter Saturation Voltage		. V				V
(I _C = 10 mA, I _B = 0.5 mA)		V _{CE(sat)}	_	0.09	0.25	v
$(I_C = 100 \text{ mA}, I_B = 5.0 \text{ mA})$			_	0.2	0.6	
$(I_C = 10 \text{ mA}, I_B = \text{See Note 1})$	V. 10.		_	0.3	0.6	
Base - Emitter Saturation Voltage	0 1	V _{BE(sat)}	_	0.7	_	V
$(I_C = 10 \text{ mA}, I_B = 0.5 \text{ mA})$		(,				
Base - Emitter On Voltage		V _{BE(on)}				V
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$ $(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V})$		22(0)	0.55	-	0.7	
(I _C = 10 mA, V _{CE} = 5.0 V)	O ^V		-	_	0.77	
SMALL-SIGNAL CHARACTERISTICS						
Current - Gain - Bandwidth Product		f _T				MHz
$(I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz})$	BC546	,	150	300	-	
	BC547		150	300	-	
	BC548		150	300		
Output Capacitance		C_{obo}	_	1.7	4.5	pF
$(V_{CB} = 10 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz})$						
Input Capacitance		C_{ibo}	_	10	_	pF
$(V_{EB} = 0.5 \text{ V}, I_C = 0, f = 1.0 \text{ MHz})$						
Small - Signal Current Gain		h _{fe}	-			_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 1.0 \text{ kHz})$	BC546		125	-	500	
	BC547/548		125	-	900	
	BC547A BC546B/547B/548B		125 240	220 330	260 500	
	BC547C/548C		450	600	900	
Noise Figure (Is = 0.0 m/s V-= 5.0 V.D. 0.10 f. d.		NF				dB
Noise Figure (I _C = 0.2 mA, V_{CE} = 5.0 V, R_{S} = 2 k Ω , f = 1.0	$0 \text{ kHz}, \Delta t = 200 \text{ Hz})$ $BC546$	INF	_	2.0	10	ub
	BC547		-	2.0	10	

^{1.} I_B is value for which I_C = 11 mA at V_{CE} = 1.0 V.

BC547/BC548

1.0

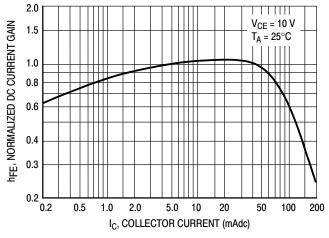
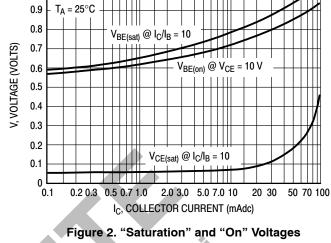



Figure 1. Normalized DC Current Gain

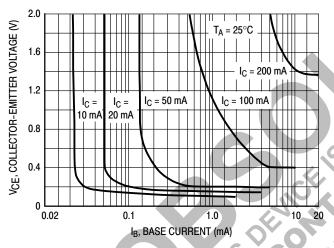


Figure 3. Collector Saturation Region

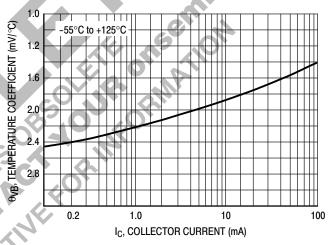


Figure 4. Base-Emitter Temperature Coefficient

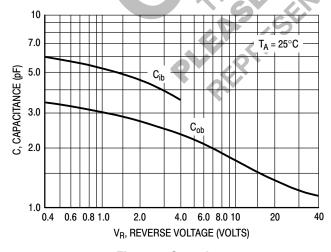


Figure 5. Capacitances

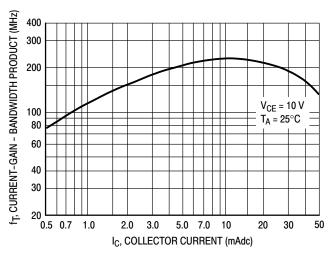


Figure 6. Current-Gain - Bandwidth Product

BC546

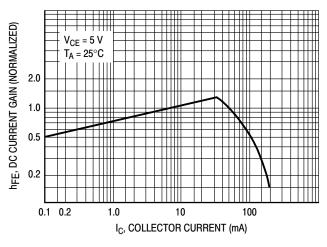


Figure 7. DC Current Gain

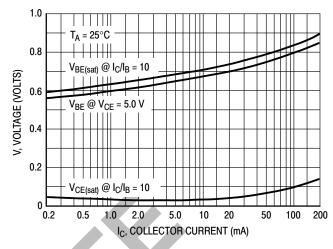


Figure 8. "On" Voltage

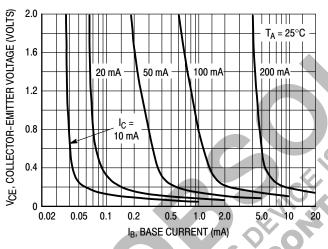


Figure 9. Collector Saturation Region

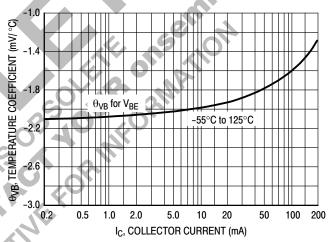


Figure 10. Base-Emitter Temperature Coefficient

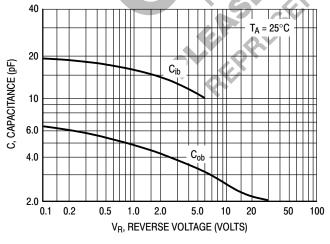
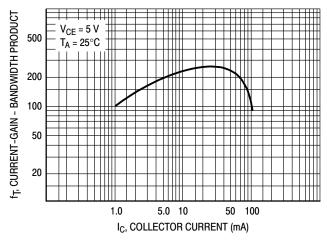
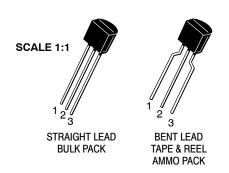


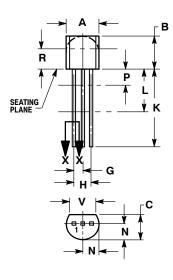
Figure 11. Capacitance




Figure 12. Current-Gain - Bandwidth Product

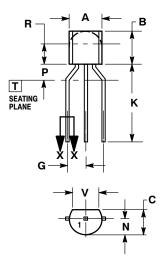
ORDERING INFORMATION

Device	Package	Shipping [†]
BC546B	TO-92	5000 Units / Bulk
BC546BG	TO-92 (Pb-Free)	5000 Units / Bulk
BC546BRL1	TO-92	2000 / Tape & Reel
BC546BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC546BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC547ARL	TO-92	2000 / Tape & Reel
BC547ARLG	TO-92 (Pb-Free)	2000 / Tape & Reel
BC547AZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC547BG	TO-92 (Pb-Free)	5000 Units / Bulk
BC547BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC547BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC547CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC547CZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC548BG	TO-92 (Pb-Free)	5000 Units / Bulk
BC548BRL1G	TO-92 (Pb-Free)	2000 / Tape & Reel
BC548BZL1G	TO-92 (Pb-Free)	2000 / Ammo Box
BC548CG	TO-92 (Pb-Free)	5000 Units / Bulk
BC548CZL1G	TO-92 (Pb-Free)	2000 / Ammo Box


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 (TO-226) CASE 29-11 **ISSUE AM**

DATE 09 MAR 2007



STRAIGHT LEAD **BULK PACK**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 CONTOUR OF PACKAGE BEYOND DIMENSION R
 IS UNCONTROLLED.
- LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.175	0.205	4.45	5.20	
В	0.170	0.210	4.32	5.33	
С	0.125	0.165	3.18	4.19	
D	0.016	0.021	0.407	0.533	
G	0.045	0.055	1.15	1.39	
Н	0.095	0.105	2.42	2.66	
J	0.015	0.020	0.39	0.50	
K	0.500		12.70		
L	0.250		6.35		
N	0.080	0.105	2.04	2.66	
Р		0.100		2.54	
R	0.115		2.93		
٧	0.135		3.43		

BENT LEAD TAPE & REEL AMMO PACK

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER

- AND BEYOND DIMENSION K MINIMUM.

	MILLIMETERS						
DIM	MIN	MAX					
Α	4.45	5.20					
В	4.32	5.33					
С	3.18	4.19					
D	0.40	0.54					
G	2.40	2.80					
J	0.39	0.50					
K	12.70						
N	2.04	2.66					
P	1.50	4.00					
R	2.93						
٧	3.43						

STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42022B	Electronic versions are uncontrolled except when accessed directly from the Document Reposit Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-92 (TO-226)		PAGE 1 OF 2		

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves onsem and of 15GTI in are trademarks of Semiconductor Components industries, LLC due onsem or its substitutines in the Office States and/or other countries. Onsem reserves the right to make changes without further notice to any products herein. onsem makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) CASE 29-11 ISSUE AM

DATE 09 MAR 2007

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	
PIN 1. 2.	GATE	PIN 1.	SOURCE	PIN 1.	DRAIN	PIN 1.	BASE 1	2.	CATHODE
2.	ANODE CATHODE & ANODE	2.	GATE	2.	ANODE 1 GATE CATHODE 2	2.	EMITTER COLLECTOR BASE	2.	ANODE 1 CATHODE ANODE 2
2.	ANODE GATE	PIN 1. 2.	COLLECTOR	PIN 1.	ANODE CATHODE NOT CONNECTED	PIN 1.	GATE	PIN 1. 2.	NOT CONNECTED CATHODE ANODE
PIN 1. 2.	COLLECTOR EMITTER	PIN 1.	SOURCE GATE	PIN 1. 2.		PIN 1. 2.	EMITTER COLLECTOR/ANODE CATHODE	PIN 1. 2.	MT 1
	Vcc	PIN 1.	MT SUBSTRATE		CATHODE ANODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	DRAIN
PIN 1. 2.	GATE	PIN 1. 2.	BASE COLLECTOR EMITTER	PIN 1. 2.	RETURN INPUT OUTPUT	PIN 1. 2.	INPUT		

DOCUMENT NUMBER:	98ASB42022B	98ASB42022B Electronic versions are uncontrolled except when accessed directly from the Document F Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	TO-92 (TO-226)		PAGE 2 OF 2			

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales