

Voltage Regulator - Low Iq, Low Dropout, Power Good Output

1.2 A

NCP187

The NCP187 is 1.2 A LDO Linear Voltage Regulator. It is a very stable and accurate device with low quiescent current consumption (typ. $30~\mu A$ over the full temperature range), low dropout, low output noise and very good PSRR. The regulator incorporates several protection features such as Thermal Shutdown, Soft Start, Current Limiting and also Power Good Output signal for easy MCU interfacing.

Features

- Operating Input Voltage Range: 1.5 V to 5.5 V
- Adjustable and Fixed Voltage Options Available: 0.8 V to 5.2 V
- Low Quiescent Current: typ. 30 μA over Temperature
- ±2% Accuracy Over Full Load, Line and Temperature variations
- PSRR: 75 dB at 1 kHz
- Low Noise: typ. 15 μ V_{RMS} from 10 Hz to 100 kHz
- Stable With Small 10 µF Ceramic Capacitor
- Soft-start to Reduce Inrush Current and Overshoots
- Thermal Shutdown and Current Limit Protection
- Power Good Signal Extends Application Range
- Available in WDFN6 and WDFNW6 2x2, 0.5P Packages
- This is Pb-free Device

Typical Applications

- · Wireless Chargers
- Portable Equipment
- Smart Camera and Robotic Vision Systems
- Telecommunication and Networking Systems

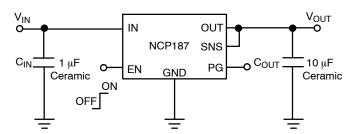


Figure 1. Typical Application Schematic

1

WDFN6/WDFNW6 2x2 CASES 511BR & 511DW

MARKING DIAGRAM

XX = Specific Device Code

M = Month Code
■ Pb-Free Package

(Note: Microdot may be in either location)

PIN CONNECTIONS

WDFN6, WDFNW6 2x2 mm (Top View)

ORDERING INFORMATION

See detailed ordering and shipping information in on page 8 of this data sheet.

PIN FUNCTION DESCRIPTION

Pin No.	Pin Name	Description		
1	IN	Input pin. A small capacitor is needed from this pin to ground to assure stability		
6	OUT	Regulated output voltage pin. A small 10 μF ceramic capacitor is needed from this pin to ground to assure stability		
3, EXP	GND	Power supply ground		
2	EN	Enable pin. Driving this pin high turns on the regulator. Driving EN pin low puts the regulator into shut-down mode		
5	SNS	Sense pin. Connect this pin to regulated output voltage or resistor divider (adjustable version)		
4	PG	Power Good, open collector. Use 10 k Ω to 100 k Ω pull–up resistor connected to output, input or other voltage (see maximum ratings)		

ABSOLUTE MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Input Voltage (Note 1)	V _{IN}	-0.3 to 6	V
Enable Voltage	V _{EN}	-0.3 to 6	V
Power Good Current	I _{PG}	30	mA
Power Good Voltage	V_{PG}	-0.3 to 6	V
Output Voltage	V _{OUT}	-0.3 to V _{IN} + 0.3 (max. 5.5)	V
Output Short Circuit Duration	t _{SC}	Indefinite	S
Maximum Junction Temperature	T _{J(MAX)}	150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
ESD Capability, Human Body Model (Note 2)	ESD _{HBM}	2000	V
ESD Capability, Machine Model (Note 2)	ESD _{MM}	200	V

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.

2. This device series incorporates ESD protection and is tested by the following methods:

ESD Human Body Model tested per AEC-Q100-002 (EIA/JESD22-A114) ESD Machine Model tested per AEC-Q100-003 (EIA/JESD22-A115)

Latch up Current Maximum Rating tested per JEDEC standard: JESD78

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit				
THERMAL CHARACTERISTICS, WDFN6, WDFNW6 2x2, 0.65 PITCH PACKAGE							
Thermal Resistance, Junction-to-Ambient (Note 3)	$R_{ heta JA}$	51	°C/W				
Thermal Resistance, Junction-to-Case (top)	$R_{\theta JC(top)}$	142	°C/W				
Thermal Resistance, Junction-to-Case (bottom) (Note 4)	$R_{\theta JC(bot)}$	7.8	°C/W				
Thermal Resistance, Junction-to-Board	$R_{ heta JB}$	125	°C/W				
Characterization Parameter, Junction-to-Top	Ψ_{JT}	2.0	°C/W				
Characterization Parameter, Junction-to-Board	Ψ_{JB}	7.7	°C/W				

^{3.} The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a high-K board, following the JEDEC51.7 guidelines with assumptions as above, in an environment described in JESD51–2a.

4. The junction–to–case (bottom) thermal resistance is obtained by simulating a cold plate test on the IC exposed pad. Test description can

be found in the ANSI SEMI standard G30-88.

ELECTRICAL CHARACTERISTICS ($-40^{\circ}C \le T_{J} \le 125^{\circ}C$; VIN = $V_{OUT} + 1.0$ V; $I_{OUT} = 10$ mA, $C_{IN} = 1$ μ F, $C_{OUT} = 10$ μ F, unless otherwise noted. Typical values are at $T_{J} = +25^{\circ}C$. (Note 6))

Parameter	Test Conditions		Symbol	Min	Тур	Max	Unit	
Operating Input Voltage				Vin	1.5		5.5	٧
Output Voltage Accuracy	-40°C ≤ T _J ≤ 125°C,	V _{OUT} <	1.7 V	V _{OUT}	–35 mV		+35 mV	V
	V _{OUT} +1 V < V _{IN} < 5.5 V, 0 mA < I _{OUT} < 1.2 A	$V_{OUT} + 1 \text{ V} < V_{IN} < 5.5 \text{ V},$ 0 mA < $I_{OUT} < 1.2 \text{ A}$ $V_{OUT} \ge 1.7 \text{ V}$		1	-2 %		+2 %	
Reference Voltage				V_{REF}		0.8		V
Line Regulation	$V_{OUT} + 1 V \le V_{IN} \le 5.5 V, I_{OU}$	_{JT} = 1 mA		Reg _{LINE}		40		μV/V
Load Regulation	I _{OUT} = 0 mA to 1.2 A			Reg _{LOAD}		2		μV/mA
Dropout voltage	$V_{DO} = V_{IN} - (V_{OUT(NOM)} - 3\%)$	%)	1.2 V – 1.4 V	V_{DO}		325	495	mV
	I _{OUT} = 1.2 A		1.5 V – 1.7 V			240	400	
			1.8 V – 2.7 V	1		200	335	
			2.8 V – 3.2 V			165	250	
			3.3 V – 4.9 V			150	220	
						120	180	
Maximum Output Current	(Note 7)			l _{OUT}	1300	1750		mA
Short Circuit Current	(Note 7)			I _{SC}		1850		mA
Disable Current	V _{EN} = 0 V			I _{DIS}		0.1	5.0	μΑ
Quiescent Current	I _{OUT} = 0 mA	I _{OUT} = 0 mA				30	45	μΑ
Ground current	I _{OUT} = 1.2 A			I _{GND}		2		mA
Power Supply Rejection Ratio	$ \begin{array}{l} V_{IN} = 3.5 \; V + 100 \; mVpp \\ V_{OUT} = 2.5 \; V \\ I_{OUT} = 10 \; mA, \; C_{OUT} = 1 \; \mu F \end{array} \hspace{0.5cm} f = 1 \; kHz $		PSRR		75		dB	
Output Noise Voltage	VOUT = 1.8 V, IOUT = 10 mA f = 10 Hz to 100 kHz		V _N		15		μV_{rms}	
Enable Input Threshold	Voltage increasing		V _{EN_HI}	0.9	-	-	٧	
Voltage	Voltage decreasing			V _{EN_LO}	-	-	0.3	
EN Pin Current	V _{EN} = 5.5 V					100		nA
Active Output Discharge Resistance	V _{IN} = 5.5 V, V _{EN} = 0 V					120		Ω
Power Good, Output Voltage Raising						92		%
Power Good, Output Voltage Falling				V_{PGdw}		80		%
Power Good Output Voltage Low	I _{PG} = 6 mA, Open drain			V_{PGlo}		0.14	0.4	V
Thermal Shutdown Temperature (Note 5)	Temperature increasing from T _J = +25°C			T _{SD}		170		°C
Thermal Shutdown Hysteresis (Note 5)	Temperature falling from TSD			T _{SDH}	-	15	-	°C

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

 ^{5.} Guaranteed by design and characterization.
 6. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.

^{7.} Respect SOA.

TYPICAL CHARACTERISTICS

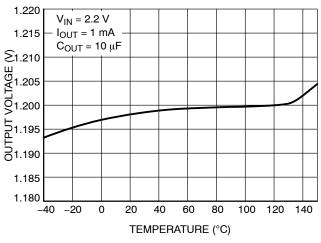


Figure 2. Output Voltage vs. Temperature – $V_{OUT} = 1.2 \text{ V}$

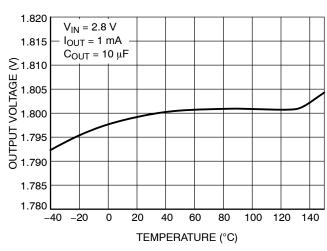


Figure 3. Output Voltage vs. Temperature – $V_{OUT} = 1.8 \text{ V}$

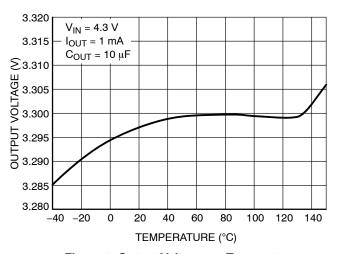


Figure 4. Output Voltage vs. Temperature – $V_{OUT} = 3.3 \text{ V}$

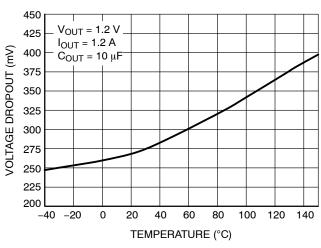


Figure 5. Dropout Voltage vs. Temperature – $V_{OUT} = 1.2 \text{ V}$

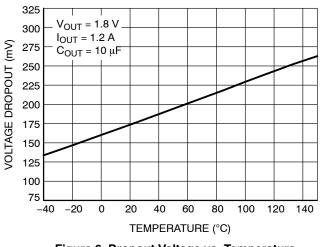


Figure 6. Dropout Voltage vs. Temperature – $V_{OUT} = 1.8 \text{ V}$

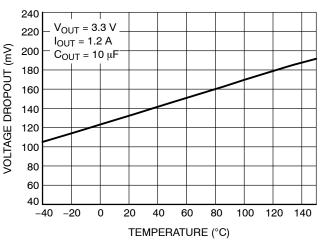


Figure 7. Dropout Voltage vs. Temperature – V_{OUT} = 3.3 V

TYPICAL CHARACTERISTICS

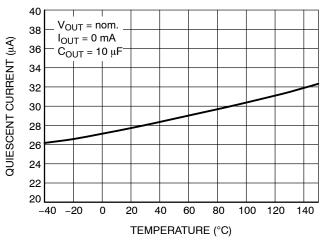


Figure 8. Quiescent Current vs. Temperature

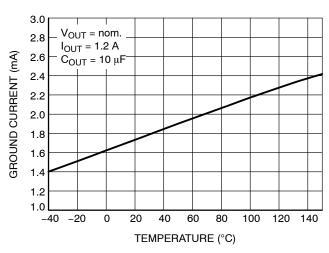


Figure 9. Ground Current vs. Temperature

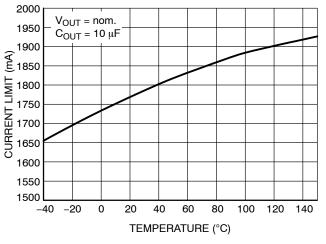


Figure 10. Current Limit vs. Temperature

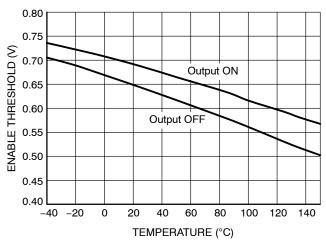


Figure 11. Enable Thresholds vs. Temperature

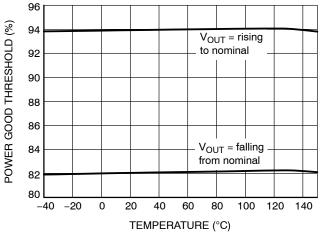


Figure 12. Power Good Thresholds vs. Temperature

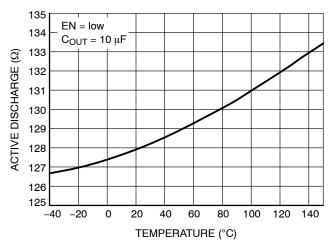
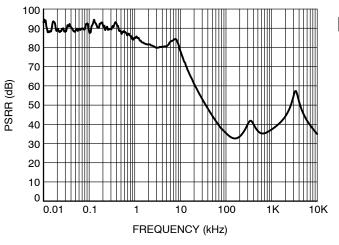



Figure 13. Active Discharge Resistance vs. Temperature

TYPICAL CHARACTERISTICS

FREQUENCY~(kHz) Figure 14. Power Supply Rejection Ratio for V_{OUT} = 1.8 V, I_{OUT} = 10 mA, C_{OUT} = 10 μF

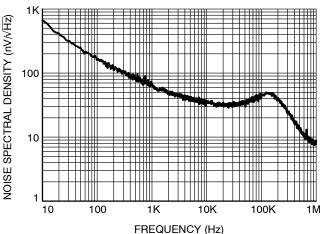


Figure 15. Output Voltage Noise Spectral Density for V_{OUT} = 1.8 V, I_{OUT} = 10 mA, C_{OUT} = 10 μ F

APPLICATIONS INFORMATION

The NCP187 is the member of new family of high output current and low dropout regulators which delivers low quiescent and ground current consumption, good noise and power supply ripple rejection ratio performance. The NCP187 incorporates EN pin and power good output for simple controlling by MCU or logic. Standard features include current limiting, soft–start feature and thermal protection.

Input Decoupling (CIN)

It is recommended to connect at least 1 μF ceramic X5R or X7R capacitor between IN and GND pin of the device. This capacitor will provide a low impedance path for any unwanted AC signals or noise superimposed onto constant input voltage. The good input capacitor will limit the influence of input trace inductances and source resistance during sudden load current changes. Higher capacitance and lower ESR capacitors will improve the overall line transient response.

Output Decoupling (COUT)

The NCP187 does not require a minimum Equivalent Series Resistance (ESR) for the output capacitor. The device is designed to be stable with standard ceramics capacitors with values of 4.7 μF or greater. Recommended capacitor for the best performance is 10 μF . The X5R and X7R types have the lowest capacitance variations over temperature thus they are recommended.

Power Good Output Connection

The NCP187 include Power Good functionality for better interfacing to MCU system. Power Good output is open collector type, capable to sink up to 10 mA. Recommended operating current is between 10 μ A and 1 mA to obtain low saturation voltage. External pull–up resistor can be

connected to any voltage up to 5.5 V (please see Absolute Maximum Ratings table above). Please note that Power Good internal circuitry is non-functional (disabled) to achieve the lowest possible internal current consumption in case of disabled LDO through Enable input (EN = Low). In this case internal Power Good transistor is open and output logic level is defined by voltage used for pull-up resistor. When Power Good is intended to be used as part of power sequencing functionality, then please connect external pull-up resistor to output voltage of NCP187. This will allow you to get correct low PG signal when LDO is disabled. Active discharge option is recommended to discharge output capacitors connected to LDO.

Power Good signal is internally delayed avoiding reaction to short glitches in output voltage. Blanking time is about $7 \mu s$ when voltage is decreasing from nominal value and about $15 \mu s$ when voltage is increasing back to nominal value.

Power Dissipation and Heat Sinking

The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation junction temperature should be limited to +125°C. The maximum power dissipation the NCP187 can handle is given by:

$$P_{D(MAX)} = \frac{\left[T_{J(MAX)} - T_{A}\right]}{R_{\theta JA}}$$
 (eq. 1)

The power dissipated by the NCP187 for given application conditions can be calculated from the following equations:

$$\label{eq:pde} P_D \approx V_{IN} \! \left(I_{GND} \! \left(I_{OUT} \! \right) \right) + I_{OUT} \! \left(V_{IN} - V_{OUT} \! \right) \quad \text{ (eq. 2)}$$

or

$$V_{IN(MAX)} \approx \frac{P_{D(MAX)} + \left(V_{OUT} \times I_{OUT}\right)}{I_{OUT} + I_{GND}}$$
 (eq. 3)

Hints

VIN and GND printed circuit board traces should be as wide as possible. When the impedance of these traces is high, there is a chance to pick up noise or cause the regulator to malfunction. Place external components, especially the output capacitor, as close as possible to the NCP187, and make traces as short as possible.

ADJUSTABLE VERSION

Not only adjustable version, but also any fixed version can be used to create adjustable voltage, where original fixed voltage becomes reference voltage for resistor divider and feedback loop. Output voltage can be equal or higher than original fixed option, while possible range is from 0.8 V up to 5.2 V. Picture below shows how to add external resistors to increase output voltage above fixed value.

Output voltage is then given by equation:

$$V_{OUT} = V_{FIX} \times (1 + R1/R2)$$

where V_{FIX} is voltage of original fixed version (from 0.8 V up to 5.2 V). Do not operate the device at output voltage about 5.2 V, as device can be damaged.

In order to avoid influence of current flowing into SNS pin to output voltage accuracy (SNS current varies with voltage option and temperature, typical value is 300 nA) it is recommended to use values of R1 and R2 below 500 k Ω .

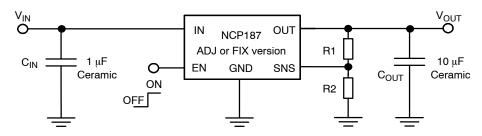


Figure 16.

Please note that output noise is amplified by V_{OUT}/V_{FIX} ratio. For example, if original 0.8 V fixed variant is used to create 3.6 V output voltage, output noise is increased 3.6/0.8 = 4.5 times and real value will be 4.5 × 15 μV_{rms} = 67.5 μV_{rms} . For noise sensitive applications it is

recommended to use as high fixed variant as possible – for example in case above it is better to use 3.3 V fixed variant to create 3.6 V output voltage, as output noise will be amplified only $3.6/3.3 = 1.09 \times (16.4 \,\mu\text{V}_{rms})$.

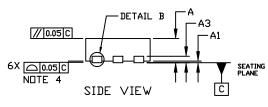
ORDERING INFORMATION

Device part no.	Voltage Option	Marking	Option	Package	Shipping†
NCP187AMTADJTAG	ADJ.	TA			
NCP187AMT080TAG	0.8V	TC	With Active Output		3000 / Tape & Reel
NCP187AMT120TAG	1.2V	TJ	Discharge		
NCP187AMT330TAG	3.3V	TL			
NCP187AMTWADJTAG	ADJ.	L2	With Active Output	WDFNW6 2x2 WF SLP	
NCP187AMTW080TAG	0.8V	LG	Discharge	(Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

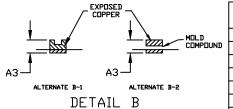
PIN 1

REFERENCE

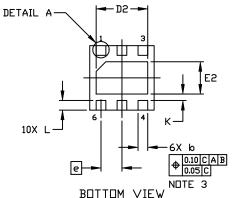

WDFN6 2x2, 0.65P

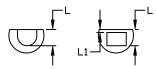
CASE 511BR ISSUE C

DATE 01 DEC 2021


NOTES:

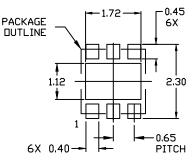
- 1. DIMENSION AND TOLERANCING PER ASME Y14.5, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM THE TERMINAL TIP.
- COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.


TOP VIEW


В

ALTERNATE CONSTRUCTION

MILLIMETERS DIM MIN. NDM. 0.70 0.75 0.80 0.05 0.00 A1 АЗ 0.20 REF 0.25 0.30 0.35 b D 1.90 2.00 2.10 1.70 1.50 1.60 П2 Ε 1.90 2.00 2.10 E2 0.90 1.00 1.10 0.65 BSC 0.20 REF K 0.20 0.30 0.40 L1 0.15



ALTERNATE A-1

DETAIL A

ALTERNATE CONSTRUCTIONS

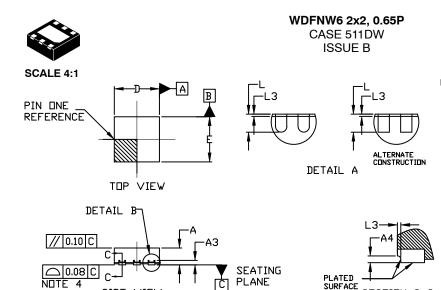
RECOMMENDED MOUNTING FOOTPRINT

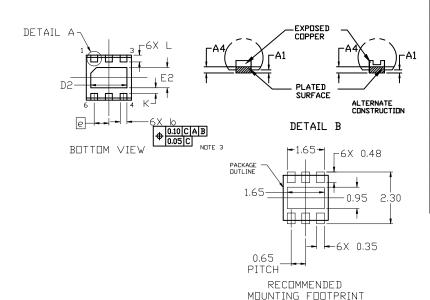
For additional information on our Pb-Free strategy and soldering details, please download the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SDL DERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device CodeM = Date Code

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON55829E	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFN6 2X2, 0.65P		PAGE 1 OF 1	


onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

DATE 15 JUN 2018

SIDE VIEW

NDTES:

SECTION C-C

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 6 APPLIES TO PLATED TERMINALS AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM THE TERMINAL TIP.
- 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
- 5. THIS DEVICE CONTAINS WETTABLE FLANK
 DESIGN FEATURES TO AID IN FILLET
 FORMATION ON THE LEADS DURING MOUNTING.

	MILLIMETERS			
DIM	MIN.	N□M.	MAX.	
Α	0.70	0.75	0.80	
A1			0.05	
A3	Ú	0.20 REF	-	
Α4	0.10	-	-	
b	0.25	0.30	0.35	
D	1.90	2.00	2.10	
D2	1.50	1.60	1.70	
E	1.90	2.00	2.10	
E2	0.80	0.90	1.00	
ď	0.65 BSC			
K	0.25 REF			
L	0.25	0.30	0.35	
L3	0.05 REF			

GENERIC MARKING DIAGRAM*

M = Month Code

= Pb-Free Package

(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " •", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON79327G	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	WDFNW6 2x2, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales